首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
秸秆还田配施氮肥对稻田增产及田面水氮动态变化的影响   总被引:6,自引:1,他引:5  
针对我国南方稻田氮素流失污染严重问题,为明确高产稻田秸秆还田下氮肥施用效应,采用田间试验,研究秸秆全量还田下不同氮肥用量对水稻产量及稻田田面水氮素动态变化的影响,以期为长江下游径流易发地区探寻兼顾产量与环境效益的秸秆还田配施氮肥措施。结果表明:(1)秸秆还田下配施氮肥可显著提高水稻产量,但当氮肥用量过高则增产效应降低,连续秸秆还田4年以上可以发挥秸秆部分替代氮肥的增产效应;(2)稻田田面水总氮TN、NH4+-N在每次施肥后1~2 d达到峰值,之后迅速下降至相对低浓度水平,施肥后一周内是氮素径流损失的风险期,秸秆还田可有效降低水稻生育前期稻田田面水TN浓度,但同时一定程度增大了可溶性有机氮(DON)的流失潜力;(3)秸秆还田下搭配减氮施肥(SN1)较推荐氮肥(SN2)与常规施肥(SN3)可分别减少25%、40%氮肥用量,同时可分别降低田面水中9.6%、20.8%TN含量(P <0.05),是兼顾产量与环境效益的最佳措施。因此,推荐长江中下游径流易发的水稻种植区,对秸秆长期全量还田,配施氮肥用量180~225 kg·hm–2  相似文献   

2.
通过大田试验,设计3个不同氮肥水平(0、150、240kgN·hm-2)和两种不同施肥比例(基肥:分蘖肥:穗粒肥=40%:30%:30%、基肥:分蘖肥:穗粒肥=30%:20%:50%),研究了氮肥运筹对稻田田面水氮素动态变化特征和氮素吸收利用效率的影响。结果表明,稻田田面水NH4+-N和总N浓度在施肥后第1d达到最大值,随后降低,在施肥后的第7d,分别降为峰值的7.88%~17.84%和29.71%~45.55%。施氮水平介于0~240Nkg·hm-2时,水稻产量随着氮素水平的提高而显著增加,氮素的吸收利用率和偏生产力却随之降低。在高氮水平(240kgN·hm-2)下,与氮肥前移相比(基肥:分蘖肥:穗粒肥=40%:30%:30%),采用氮肥后移(基肥:分蘖肥:穗粒肥=30%:20%:50%)的施肥比例,水稻产量增加了6.2%、氮素吸收利用率和农学利用率分别提高了30.49%和23.72%,而氮素生理利用率和偏生产力差异不显著,说明适宜的氮肥运筹可以增加水稻的产量,提高氮素的吸收利用率和农学利用率,减少氮素损失。  相似文献   

3.
掺混控释肥侧深施对稻田田面水氮素浓度的影响   总被引:3,自引:4,他引:3       下载免费PDF全文
为了明确掺混控释肥侧深施对稻田氮素损失的控制效果,采用大田试验,以武运粳23号为试验材料,通过设置无机化肥常规用量分次施用(CN)、掺混控释肥梯度减量一次性基施(常规用量、减量10%、减量20%和减量30%)共5个处理,研究了掺混控释肥(RBB)减量对太湖地区稻田田面水不同形态氮素浓度的影响及产量效益。结果表明,与无机化肥常规用量分次施用CN处理(270 kg/hm~2)相比,RBB减量10%~30%不会造成水稻减产。田面水氮素以铵态氮为主,无机化肥施用后田面水氮素浓度在施肥后1~2 d即达到峰值浓度,此后逐渐下降;掺混控释肥处理的3个肥期田面水氮素峰值浓度较低,均显著低于CN处理。由于田面水氮素以铵态氮为主,因此总氮均值浓度降低幅度与铵态氮较一致。其中,基肥期、蘖肥期、穗肥期田面水总氮均值浓度两年降低幅度分别为87.19%~93.87%(2015年)和76.93%~83.48%(2016年),69.74%~79.73%(2015年)和74.46%~87.52%(2016年),94.43%~96.69%(2015年)和95.52%~96.57%(2016年)。RBB减量能够降低前期(基肥期和蘖肥期)田面水氮浓度,总体呈随用量减少而降低的趋势。但减量幅度相近处理的田面水氮素浓度未呈现一致性规律变化。结果说明,RBB施用减少了太湖地区稻田肥期氮素流失风险,RBB肥料用量为189~216 kg/hm~2能够在保证水稻产量的前提下降低前期田面水氮素浓度,减少氮素流失风险。  相似文献   

4.
为指导水稻田合理施肥,防治稻田面源污染,试验开展了不同氮肥减施比例对紫云英—水稻轮作体系下稻田田面水氮磷流失的影响研究。2020年在浙江建德开展田间小区试验,设置冬闲(CK)和冬种紫云英(CT)2个处理,并在冬种紫云英基础上设置4个减氮比例,分别为0(CT0),10%(CT1),20%(CT2),30%(CT3),共5个处理,每个处理重复3次。在水稻移栽施肥后开始稻田田面水样品采集(包括施肥2周内的连续采样以及2周后相隔7,14,28天的间隔采样),测定田面水氮磷浓度;于水稻成熟后采集土壤和植物样品,测定土壤理化性状以及水稻生长性状和产量。各处理田面水总氮、可溶性氮、铵态氮以及总磷、可溶性磷均在施肥后第1天达到峰值,总氮在基肥后4天内降幅明显,为最大值的4.2%~9.1%,可溶性磷在施基肥5天内降至最大值的4.7%~13.7%。采样期内,CK处理田面水总氮、可溶性氮、总磷和可溶性磷的平均浓度分别为48.87,36.82,0.82,0.64 mg/L,CT0、CT1、CT2、CT3的总氮平均浓度分别为CK的93.9%,78.1%,79.7%,69.7%;可溶性氮平均浓度分别为CK的95.1%,84.1%,85.7%,73.2%;总磷平均浓度分别为CK的90.9%,76.9%,96.2%,81.3%;可溶性磷平均浓度分别为CK的79.4%,73.8%,87.3%,68.7%。与CK相比,CT2、CT3显著提高土壤有效磷含量,增加幅度分别为61.7%和37.0%。比较冬闲处理,翻压紫云英使水稻株高增高0.7%~3.5%,有效穗数增加7.0%~15.2%,水稻增产0.4%~4.9%。与冬闲处理相比,冬种紫云英配合不同比例氮肥减施均能降低稻田田面水氮磷流失风险,其中以30%氮肥减量效果最好;紫云英配合减氮施肥措施能够提升土壤有效磷、全氮含量和水稻产量,其中均以紫云英配合20%减氮施肥效果最好。综合稻田田面水氮磷流失风险、土壤肥力以及水稻产量,紫云英配合20%减氮施肥是较为适合该地区的种植方式。  相似文献   

5.
合理的综合种养模式及密度对实现洱海流域稻季氮肥减量和稻田氮素减排至关重要。通过对稻鸭、稻蟹共作模式的田间定点试验,分析了不同养殖密度与氮肥优化下两种稻季综合种养模式对田面水氮素动态变化及水稻产量的影响。结果表明:田面水TN、NH_4~+-N、NO_3~--N浓度在施肥后上升,3~5 d后达到峰值,之后迅速下降趋于平稳,TN、NH_4~+-N后期略有小幅度上升。相对于常规处理(HT),空白处理(CK)、低密度养蟹处理(CL)、高密度养蟹处理(CH)、低密度养鸭处理(DL)、高密度养鸭处理(DH)田面水TN浓度分别降低了28.8%、14.7%、14.1%、7.3%、3.1%,NH_4~+-N浓度分别降低了27.4%、15.1%、24.7%、11.0%、24.7%,NO_3~--N浓度CK降低了30.0%,CL、CH、DL、DH分别提高了15.0%、5.0%、40.0%、25.0%;稻鸭共作能够显著降低NH_4~+-N/Nmin值,显著增加NO_3~--N/Nmin值,而稻蟹共作对NH_4~+-N/Nmin和NO_3~--N/Nmin值影响不显著;稻鸭和稻蟹共作对Nmin/TN、ON/TN值无显著影响。与HT处理相比,CL、CH、DL和CK处理水稻产量分别显著提高了11.4%、9.4%、9.2%和5.1%,而DH却降低4.1%。稻鸭、稻蟹共作模式减少了氮肥施用量,低密度养鸭/蟹处理与氮肥优化相结合更有利于保证水稻产量。  相似文献   

6.
前氮后移对水稻产量形成和田面水氮素动态变化的影响   总被引:3,自引:0,他引:3  
通过田间小区试验,在施氮量180 kg/hm~2水平下,设置4个氮肥运筹比例,基肥∶分蘖肥∶穗肥的比例分别为10∶0∶0(T1),4∶3∶3(T2),2∶3∶5(T3),0∶3∶7(T4),研究氮肥后移对水稻产量形成和稻田田面水氮素动态变化的影响。结果表明:与氮肥全部作为基肥施用的处理相比,将前期氮肥的30%甚至50%后移到穗肥施用,对水稻产量没有明显影响,而氮肥后移70%至穗肥会使水稻产量显著下降。田面水中总氮(TN)和可溶性总氮(DTN)浓度在每次施肥后1天达到峰值,铵态氮(NH_4~+-N)浓度在基肥和分蘖肥后1天达到峰值,穗肥后3天达到峰值,随后逐渐降低至与不施氮肥处理相当。整个基肥期、分蘖肥后20天内和穗肥后9天内是防止稻田氮素流失的关键期。施尿素后,DTN是田面水氮素的主要部分,DTN以无机氮(IN)为主,而NH_4~+-N在IN中所占比例达64.0%以上。比较水稻生育过程中氮素流失风险期内的TN、DTN和NH_4~+-N三氮浓度,相比T1,T2的三氮浓度分别降低了2.9%,1.6%,3.1%,T3的三氮浓度分别降低了15.5%,14.7%,22.3%,T4的三氮浓度分别降低了16.1%,22.9%,34.1%,结合产量,确定基肥∶分蘖肥∶穗肥比例为2∶3∶5的氮肥后移措施能够在保证水稻产量不下降的同时,有效降低稻田氮素的流失风险。  相似文献   

7.
氮肥运筹对苏打盐碱地水稻产量和氮肥利用率的影响   总被引:1,自引:0,他引:1  
为探究氮肥运筹对苏打盐碱地水稻产量和氮肥利用率的影响,在大田条件下,于2017-2018年,以粳稻品种垦粳7号和垦粳8号为供试材料,设置5种氮肥运筹,即不施氮肥(N0)、农民常规施氮(N1,纯N总量150 kg·hm-2,基肥∶蘖肥∶穗肥=6∶3∶1)、平衡施氮(N2,纯N总量150 kg·hm-2,基肥∶蘖肥∶穗肥=4∶3∶3)、平衡减氮施肥(N3,纯N总量135 kg·hm-2,基肥∶蘖肥∶穗肥=4∶3∶3)、氮肥前移(N4,纯N总量150 kg·hm-2,基肥∶蘖肥∶穗肥=5∶3∶2),其中以N1为对照,研究不同氮肥运筹下其产量、产量构成因素、地上部分植株含氮量、穗部氮素积累量以及氮肥利用率的变化。结果表明,与N1相比,N2和N3的产量分别增加了11.45%和5.71%,且N2与N1间差异达显著水平,而N4的产量减少了10.43%;N2和N3齐穗期和成熟期地上部植株含氮量及穗部氮素积累量均得到显著提高,而N4显著降低;N2和N3显著提高了氮肥吸收利用率(NRE)、氮肥农学利用率(NAE)和氮肥...  相似文献   

8.
稻田田面水中三氮浓度的动态变化特征研究   总被引:15,自引:6,他引:15  
为了研究南方稻田在施肥后表面水和渗漏水中三氮的动态变化规律,故设计了这个试验。试验结果表明:田面水中NH4 和TN在1d后达到极大值,随时间推移,下降较快。NO3-,NH4 /TN,NO3-/TN和(NH4 NO3-)/TN是先升后降。NH4 和TN可作为稻田田面水污染监测的主要氮素指标,NO3-作为辅助监测指标。三氮浓度变化与施氮量呈明显正相关。施氮9d是防止三氮大量流失的关键时期。  相似文献   

9.
精确和常规施氮对水稻产量与氮肥利用率的影响   总被引:11,自引:0,他引:11  
以武香粳14为供试材料,研究精确施氮和常规施氮对水稻产量与氮肥利用率的影响。结果表明,精确施氮处理的穗数极显著地低于常规施氮处理;精确施氮处理的水稻产量高于常规施氮处理,但未达到显著水平;精确施氮处理的氮肥当季利用率比常规施氮处理高8.8%。  相似文献   

10.
张林  徐富贤  熊洪  蒋鹏  周兴兵  朱永川  刘茂  郭晓艺 《土壤》2017,49(4):679-684
为充分发挥优质稻的产量潜力并实现水氮资源的高效利用,以优质杂交中稻旌优127为材料,在大田环境下研究管水方式(W)、施氮量(N)和施氮方式(D)及其互作对水稻产量、穗粒结构和氮肥利用率的影响。结果表明:管水方式(W)、施氮量(N)、管水方式(D)与施氮方式互作(W×D)、管水方式与施氮量互作(W×N)、施氮量与施氮方式互作(N×D)以及三者互作(W×N×D)间对旌优127产量的影响达极显著水平,施氮方式(D)对产量的影响接近显著水平(P=0.050 5),旌优127产量在不同施氮量下均以浅湿管水且氮肥后移时产量最高。管水方式(W)、施氮量(N)、施氮方式(D)及其互作对水稻穗粒结构有不同程度的影响,通径分析表明影响产量的主要因子为单位面积有效穗数,其次是穗粒数。除施氮方式(D)、管水方式与施氮量互作(W×N)外的其他因子及其互作对氮肥农学利用率有显著影响;浅湿管水处理氮肥农学利用率显著低于常规管水处理;在浅湿管水下,氮肥后移时水稻氮肥农学利用效率随着施氮量的增加显著降低,常规施氮时差异较小;在常规管水下则相反。除施氮方式(D)外的其他因子及其互作对氮肥偏生产力有显著影响;浅湿管水处理氮肥偏生产力显著高于常规管水处理;氮肥偏生产力在不同的管水方式下均随施氮量的增加显著降低。浅湿管水,施氮100 kg/hm2,最高苗期适量施用穗肥是试验所在生态区最佳的水氮管理方式。  相似文献   

11.
增效剂对稻田田面水氮素转化及水稻产量的影响   总被引:2,自引:0,他引:2  
采用田间试验的方法,通过种植单季水稻绍粳18,研究施用添加聚天门冬氨酸、腐植酸、硝化抑制剂DMPP(3,4—二甲基吡唑磷酸盐)等增效剂的肥料对水稻田面水氮素转化及其产量的影响。结果表明,稻田施氮明显提高了田面水的可溶性总氮、铵态氮、硝态氮浓度。聚天门冬氨酸、DMPP、腐植酸等增效剂的施用,水稻生育期田面水可溶性总氮平均浓度分别下降14.1%,15.8%和7.3%,铵态氮增加10.6%,27.5%和8.6%,硝态氮降低31.8%,46.7%和26.9%,有助于降低氮素流失对水体环境造成的面源污染风险。增效剂聚天门冬氨酸、DMPP和腐植酸可使水稻籽粒产量分别增加6.2%,7.8%和2.4%,秸秆产量增加10.8%,6.1%和4.0%。添加增效剂的肥料较普通肥料可以降低田面水的总氮含量,并且能更好地促进水稻生长,提高水稻产量。  相似文献   

12.
为研究晒田强度和穗期氮素运筹对不同氮效率水稻生育中后期根系、叶片生长与产量形成的关系,以德香4103(氮高效品种)和宜香3724(氮低效品种)为材料,设置3种晒田强度:W_1,0—20cm土壤体积含水量为(53.60±5.00)%;W_2,0—20cm土壤体积含水量为(40.20±5.00)%;W_3,0—20cm土壤体积含水量为(26.80±5.00)%和3种穗期氮素运筹:N_1,晒田复水后第1天施用穗肥;N_2,晒田复水后第8天施用穗肥;N_3,晒田复水后第15天施用穗肥。测定水稻抽穗期和齐穗后15天的根系形态特征、根系干重、叶面积指数、剑叶光合速率、叶片干重、产量及产量构成。结果表明:(1)德香4103稻谷产量比宜香3724平均高11.57%。(2)两类品种的产量均与抽穗期LAI和叶片干重呈显著正相关,其中德香4103产量与抽穗期和齐穗后15天单株根重和根冠比呈显著正相关,宜香3724产量与抽穗期和齐穗后15天的单株根重呈显著正相关。(3)德香4103氮肥生理利用率与抽穗期单株根重和叶面积指数、齐穗后15天单株根长呈显著正相关,宜香3724氮肥生理利用率与齐穗后15天单株根重呈显著正相关。(4)W_1和W_2处理中,施氮处理N_2和N_3氮高效品种和氮低效品种抽穗期总根长和根表面积无显著差异,氮高效品种齐穗后15天的总根长小于氮低效品种;W_3处理中,N_1和N_2中抽穗期氮低效品种单株总根长和单株根表面积大于氮高效品种,氮高效品种和氮低效品种齐穗后15天根重和根冠比无显著差异。(5)氮低效品种成熟期的叶片干重和LAI均高于氮高效品种,抽穗期至成熟期氮高效品种的叶面积衰减率大于氮低效品种。(6)氮高效品种德香4103采用W_1N_3处理,能增加抽穗至成熟期总根长,降低叶面积衰减速率,提高抽穗后叶片光合速率,提高稻谷产量;而氮低效品种宜香3724以W_2N_2为最佳处理。综上所述,晒田程度和穗期氮素运筹能够显著影响不同氮效率水稻品种生育中后期的根系和叶片特征。通过优化晒田程度和穗期氮素运筹组合,为两类品种构建合理的根系指标和叶片体系,促进根系对氮素养分的吸收,提高灌浆结实期叶片物质生产和转运能力,最终提高稻谷产量。  相似文献   

13.
为解决水稻生产过度依赖化肥及其环境和高效利用问题,探讨贵州黄壤稻田科学施用生物炭。在贵州省思南县典型黄壤稻田开展氮肥不减量(T0)和氮肥减10%施2.5 t/hm2(T1),氮肥减20%施5.0 t/hm2(T2),氮肥减30%施7.5 t/hm2(T3),氮肥减40%施10.0 t/hm2生物炭(T4)和不施肥对照(CK)共6个处理3次重复田间小区随机区组试验,研究了氮肥减量施生物炭对水稻产量、产量构成和氮磷钾养分吸收利用的影响。结果表明,氮肥减量施生物炭显著影响贵州黄壤稻田水稻产量、产量构成、地上部氮磷钾积累量和利用效率。水稻产量和氮磷钾积累量随氮肥减量和生物炭用量增加先增大后减小。2019年、2020年和2021年水稻实际产量和理论产量均分别以T2、T3和T2最高,较T0分别显著增产16.04%,17.94%和14.73%以及55.72%,64.08%和118.91%,水稻籽粒N、P2O5和K2O积累量、偏生产力、农学效率、表观利用率和收获指数均较高,是较好的氮肥减量施生物炭处理。产量—施生物炭量回归方程和极值分析表明,2019年、2020年和2021年氮肥分别减量21.76%,24.60%和19.00%(即32.64,36.90,28.50 kg/hm2)施生物炭量5.44,6.15,4.75 t/hm2时水稻产量最高(分别为7.80,8.57,8.03 t/hm2),较T0分别增产22.52%,18.78%和13.74%。氮肥减量施生物炭显著提高氮磷钾化肥利用率,但导致化肥+生物炭磷和钾利用率降低,因此,贵州黄壤稻田施生物炭时应氮磷钾化肥同步减量,降低比例以氮磷钾减量19.00%~24.60%,施生物炭5.00~6.25 t/hm2为宜。研究结果对指导贵州黄壤稻田氮磷钾化肥减量和施生物炭具有重要指导意义。  相似文献   

14.
不同施肥类型对稻田氮素流失的影响   总被引:1,自引:0,他引:1  
采用田间试验探究了不同施肥处理对稻田氮素流失的影响,其中不同施肥包括对照(CK)、常规施肥(CT)、有机肥替代(BS)和炭基肥(CB)4个处理。结果表明:CB和BS组对降低稻田氮素径流流失的效果显著(p<0.05),其中稻田铵态氮的径流流失总量CT组(20.08 kg/hm^2)>BS组(15.53 kg/hm^2)>CB组(12.68 kg/hm^2)>CK组(0.63 kg/hm^2)。通过估算不同深度土壤的铵态氮与硝态氮淋溶流失量可知,BS和CB组对降低稻田氮素淋溶流失的效果有限。CT、BS和CB组中无机氮的表面径流流失总量占施氮量的5.30%~8.30%,淋溶流失总量占施氮量的0.21%~0.27%,说明氮素流失以径流为主。各施肥处理(CT、BS、CB)分别增产18.3%,28.4%,24.9%,达显著水平(p<0.05)。研究结果说明施用炭基肥和有机肥可显著减少稻田的氮素流失。  相似文献   

15.
不同农艺措施条件下稻田田面水总氮动态变化特征研究   总被引:2,自引:3,他引:2  
通过盆栽试验,对稻田田面水总氮在不同农艺措施条件下动态变化规律进行了研究,并对该规律进行了数字拟合,以便为控制稻田氮素流失提供理论依据和技术途径.结果表明:田面水总氮浓度在施肥后第一天达到高峰,随着时间的推移不断降低,并且在每次施肥后7-9 d下降到较低水平;施肥水平和田面水总氮浓度呈正相关关系;施肥方式对田面水总氮有较大影响.随着施肥深度加深,田面水总氮含量逐渐降低;不同肥料种类对田面水总氮亦有影响,全部施用复合肥处理浓度最大,施用复合肥+碳铵处理浓度最小;有机肥作为缓释肥料在试验初期对田面水总氮贡献不大;沙土较粘壤土处理田面水总氮浓度大.  相似文献   

16.
控释氮肥侧条施用对东北地区水稻产量和氮肥损失的影响   总被引:8,自引:4,他引:4  
为探索东北地区水稻种植过程中控释氮肥侧条施用对水稻产量和氮素损失的影响,设置对照不施氮肥(CK)、农民常规施肥(FP)、高量控释氮肥(HN)、中量控释氮肥(MN)和低量控释氮肥(LN)共5个处理,通过田间小区试验研究了控释氮肥侧条施用对水稻产量、氮素回收率、农学利用效率、径流损失和不同层次淋溶水中总氮浓度变化的影响。结果表明:HN处理和MN处理在氮肥用量降低10%~20%的条件下与FP处理比较水稻籽粒产量没有显著降低,HN处理的穗数和穗粒数分别比FP处理提高了10.79%和15.38%,当氮肥减量30%(LN处理)时,水稻籽粒产量降低明显。控释氮肥侧条施用显著提高了氮肥回收率和农学利用效率,HN处理与FP处理比较氮肥回收率提高了5.23个百分点,氮肥农学效率也比FP处理提高了6.48kg/kg。控释氮肥侧条施用降低了田面水中总氮浓度和径流损失,控释氮肥各处理氮素径流损失降低幅度在37.32%~47.10%。控释氮肥侧条施用降低了淋溶水体中总氮浓度,并延迟了总氮浓度峰值出现时间,减少了氮素淋洗损失的风险,是一种兼顾水稻产量的环境友好型施肥技术。  相似文献   

17.
不同施肥处理对稻田氮素径流和渗漏损失的影响   总被引:9,自引:3,他引:9  
采用田间试验,研究了不施肥(CK)、常规施肥(CF)、90%常规施肥(90%CF)、80%常规施肥(80%CF)、控释复合肥(CRF)和有机—无机肥配施(MF)6种施肥处理对稻田氮素径流和渗漏损失的影响。结果表明:水稻田面水总氮(TN)和铵态氮(NH+4—N)浓度在施肥后第2天达到峰值,之后快速下降,第7天后降至峰值的15%以下并趋于稳定,控制稻田氮素流失最关键的时间为施肥后1周。减量施肥可以有效降低田面水和渗漏水的氮素浓度。不同施肥处理(CK除外)TN径流损失量和氮素流失率分别为8.81~15.78kg/hm2和施N量的2.58%~4.96%,其中90%CF、80%CF、CRF和MF处理TN径流流失量分别较CF处理低22.05%,34.16%,44.17%和33.52%;TN渗漏损失量和氮素淋失率分别为18.86~40.39kg/hm2和施N量的3.55%~11.77%,其中90%CF、80%CF、CRF和MF处理的TN渗漏损失量分别较CF处理低24.57%,26.52%,53.29%和26.97%。减氮20%不仅能有效减少稻田氮素径流和渗漏损失,还能有效保障水稻产量,提高氮素利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号