首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Qureshi MA  Yu M  Saif YM 《Avian diseases》2000,44(2):275-283
The role of a novel "small round virus" (SRV) isolated from poult enteritis and mortality syndrome (PEMS) cases in inducing PEMS and associated immune alterations was examined in this study. Specific-pathogen-free and conventional poults were orally challenged with SRV and/or turkey coronavirus and monitored for clinical signs. Intestines, thymus, bursa, and spleens were examined for SRV antigen at various days postinoculation (DPI). Peripheral blood lymphocytes (PBLs), thymocytes, and splenic lymphocytes from inoculated poults or lymphocytes isolated from healthy poults after incubation with SRV in vitro were examined for lymphoproliferative potential against concanavalin A (Con A). The incidence of lymphocyte subpopulations in the peripheral blood and thymic lymphocytes of SRV-challenged poults was examined by flow cytometry. The results of these studies showed that the SRV challenge induced diarrhea, growth suppression, and atrophy of thymus and bursa resembling those of PEMS in field and/or experimental infections. The SRV antigen was detected in intestinal tissues soon after infection (i.e., at 2 and 4 DPI), whereas lymphoid tissues such as thymus, bursa, and spleen were positive for SRV antigen starting at 4 DPI until 8 DPI, suggesting virus translocation to lymphoid organs. The responsiveness of PBLs to Con A at 2 DPI was significantly reduced in all virus challenge groups (e.g., 28% and 22% in the SRV-alone group in studies 1 and 2, respectively) below the uninfected group. However, this suppressed response was no longer evident in the SRV group by 7 DPI. The SRV incubation with normal thymocytes and splenocytes in vitro resulted in significantly reduced lymphoproliferative response against Con A (41.2% and 10.49% reductions at 1:50 SRV dilution vs. controls in thymocytes and splenocytes, respectively). Flow cytometry analysis revealed a sudden decline at 2 DPI in the numbers of CD4- CD8+ lymphocyte subset in PBLs of SRV-infected poults. However, by 8 DPI, SRV-challenged poults had relatively higher CD4- CD8+ lymphocytes in PBLs. On the contrary, thymocytes had higher percentages of CD4- CD8+ lymphocytes at 2 and 4 DPI and reached comparable levels at 8 DPI in controls and SRV-infected poults. No differences were observed in CD4+ CD8- lymphocyte numbers in controls vs. SRV-infected poults. The findings of these studies imply that SRV may be a promising primary etiologic agent of PEMS. Furthermore, the SRV infection may compromise the lymphocyte-mediated immune defenses by reducing lymphoproliferation and the CD4- CD8+ (presumably T-cytotoxic cells) lymphocytes during the acute stage of SRV infection.  相似文献   

2.
Poult enteritis and mortality syndrome (PEMS) is an acute, infectious intestinal disease of turkey poults, characterized by high mortality and 100% morbidity, that decimated the turkey industry in the mid-1990s. The etiology of PEMS is not completely understood. This report describes the testing of various filtrates of fecal material from control and PEMS-affected poults by oral inoculation into poults under experimental conditions, the subsequent isolation of a reovirus, ARV-CU98, from one of the PEMS fecal filtrates, and in vivo and in vitro studies conducted to determine the pathogenicity of ARV-CU98 in turkey poults. In order to identify a filtrate fraction of fecal material containing a putative etiologic agent, poults were challenged in two independent experiments with 220- and 100-nm filtrates of fecal material from PEMS-negative and PEMS-positive poults. The 100-nm filtrate was chosen for further evaluation because poults inoculated with this filtrate exhibited mortality and significantly lower (P < or = 0.05) body weight and relative bursa weight, three clinical signs associated with PEMS. These results were confirmed in a third experiment with 100-nm fecal filtrates from a separate batch of PEMS fecal material. In Experiment 3, body weight and relative bursa and thymus weights were significantly lower (P < or = 0.05) in poults inoculated with 100-nm filtrate of PEMS fecal material as compared with poults inoculated with 100-nm filtrate of control fecal material. Subsequently, a virus was isolated from the 100-nm PEMS fecal filtrate and propagated in liver cells. This virus was identified as a reovirus on the basis of cross-reaction with antisera against avian reovirus (FDO strain) as well as by electrophoretic analysis and was designated ARV-CU98. When inoculated orally into poults reared under controlled environmental conditions in isolators, ARV-CU98 was associated with a higher incidence of thymic hemorrhaging and gaseous intestines. In addition, relative bursa and liver weights were significantly lower (P < or = 0.05) in virus-inoculated poults as compared with controls. Virus was successfully reisolated from virus-challenged poults but not from control birds. Furthermore, viral antigen was detected by immunofluorescence in liver sections from virus-challenged poults at 3 and 6 days postinfection and virus was isolated from liver at 6 days postinfection, suggesting that ARV-CU98 replicates in the liver. In addition to a decrease in liver weight, there was a functional degeneration as indicated by altered plasma alanine aminotransferase and aspartate aminotransferase activities in virus poults as compared with controls. Although this reovirus does not induce fulminating PEMS, our results demonstrated that ARV-CU98 does cause some of the clinical signs in PEMS, including intestinal alterations and significantly lower relative bursa and liver weights. ARV-CU98 may contribute directly to PEMS by affecting the intestine, bursa, and liver and may contribute indirectly by increasing susceptibility to opportunistic pathogens that facilitate development of clinical PEMS.  相似文献   

3.
Poult enteritis mortality syndrome (PEMS) is an economically devastating disease. To date, many questions about the syndrome remain unanswered, including its cause, transmission of causative agent(s), and control methods. Turkey coronavirus (TCV) infection has been associated with some outbreaks of PEMS, with areas having a higher prevalence of TCV infection also experiencing an increased incidence of PEMS. This study was designed to establish mortality patterns for flocks experiencing excess mortality and TCV infection in PEMS-affected regions and to delineate the possible role of TCV in PEMS-affected flocks. Fifty-four commercial turkey flocks on farms in areas with and without a history of TCV infection were monitored for weekly mortality and for antibodies to TCV. Flocks were chosen on the basis of placement dates and were monitored from day of placement until processing. All flocks were tested for TCV by an indirect fluorescent antibody assay. PEMS status was determined with the use of the clinical definition of mortality greater than 2% during any 3-wk period from 2 wk of age through the end of brooding due to unknown cause. Of the 54 flocks, 24 remained healthy, 23 experienced PEMS, and 7 tested positive for TCV but did not experience PEMS. Ten flocks experienced PEMS and tested positive for TCV, whereas 13 flocks experienced PEMS and did not test positive for TCV. Four health status groups were evident: healthy, PEMS positive, TCV positive, and PEMS + TCV positive. Distinct mortality patterns were seen for each of the four health status groups. Whereas TCV was associated with PEMS in 43% of PEMS cases, 13 cases (57%) of PEMS did not involve TCV. Additionally, 7 out of 17 cases of TCV (41%) did not experience excess mortality (PEMS) at any time during brooding of the flock. The results of this study indicate that TCV can be associated with PEMS but is neither necessary nor sufficient to cause PEMS.  相似文献   

4.
Poult enteritis mortality syndrome (PEMS), a highly infectious disease of young turkeys, causes serious financial losses to the turkey industry. Clinically, PEMS is defined by mortality profiles, diarrhea, growth depression, and immunosuppression. Although many viruses, bacteria, and parasites are found in PEMS-infected birds, the inciting agent remains unknown. Experimentally, PEMS can be reproduced by exposing na?ve poults to the intestinal contents from infected birds. Previous reports suggest that extraintestinal tissues fail to reproduce the disease. Histopathologic examination of tissues from PEMS-infected poults suggested that the thymus exhibited the earliest signs of pathology. On the basis of these observations, we hypothesized that the thymus harbors an agent(s) involved in PEMS. In these studies, na?ve turkey poults were orally inoculated with a bacteria-free filtrate composed of either the intestines and feces or the thymus from PEMS-infected birds and were monitored for clinical signs of PEMS. Poults exposed to a filtrate composed solely of the thymus from PEMS-infected birds exhibited diarrhea, growth depression, mortality, pathology, and, most importantly, immunosuppression similar to poults exposed to the intestinal filtrate. The results of this study suggest that the thymus of infected birds harbors the agent(s) that can reproduce a PEMS-like disease in turkey poults.  相似文献   

5.
Ismail MM  Tang AY  Saif YM 《Avian diseases》2003,47(3):515-522
We designed this study to compare the replication potential of turkey coronavirus (TCV) and its effect in chickens and turkeys and to study the effect of singleand combined infection of turkey poults with TCV and astrovirus. We studied the pathogenicity of TCV in experimentally inoculated turkey poults and chickens by observing the dinical signs and gross lesions. Two trials were conducted with 1-day-old and 4-wk-old specific-pathogen-free turkey poults and chickens. One-day-old turkey poults developed diarrhea at 48 hr postinoculation. Poults euthanatized at 3, 5, and 7 days postinoculation had flaccid, pale, and thin-walled intestines with watery contents. The 4-wk-old turkeys had no clinical signs or gross lesions. One-day-old and 4-wk-old chicks developed no clinical signs or gross lesions although the TCV was detected in gut contents of the birds throughout the experimental period (14 days). In another experiment, mean plasma D-xylose concentrations in 3-day-old turkey poults inoculated with TCV, turkey astrovirus, or a combination of both viruses were significantly lower than in the uninoculated controls.  相似文献   

6.
Domestic houseflies (Musca domestica Linnaeaus) were examined for their ability to harbor and transmit turkey coronavirus (TCV). Laboratory-reared flies were experimentally exposed to TCV by allowing flies to imbibe an inoculum comprised of turkey embryo-propagated virus (NC95 strain). TCV was detected in dissected crops from exposed flies for up to 9 hr postexposure; no virus was detected in crops of sham-exposed flies. TCV was not detected in dissected intestinal tissues collected from exposed or sham-exposed flies at any time postexposure. The potential of the housefly to directly transmit TCV to live turkey poults was examined by placing 7-day-old turkey poults in contact with TCV-exposed houseflies 3 hr after flies consumed TCV inoculum. TCV infection was detected in turkeys placed in contact with TCV-exposed flies at densities as low as one fly/bird (TCV antigens detected at 3 days post fly contact in tissues of 3/12 turkeys); however, increased rates of infection were observed with higher fly densities (TCV antigens detected in 9/12 turkeys after contact with 10 flies/bird). This study demonstrates the potential of the housefly to serve as a mechanical vector of TCV.  相似文献   

7.
Poult enteritis and mortality syndrome (PEMS) is an acute, transmissible, infectious intestinal disease associated with high mortality and morbidity in turkey poults. Earlier studies demonstrated immune dysfunction, involving both humoral and cell-mediated immunity, associated with PEMS. The current study examined cytokines and metabolites produced by macrophages from poults exposed to PEMS agent(s). Six trials were conducted with six separate hatches of poults. Poults in the PEMS group were exposed to PEMS agent(s) via contact exposure at 7 days of age whereas uninfected poults served as control poults. Abdominal macrophages were harvested from control (uninfected) and PEMS poults at various times postexposure and cultured for 18-24 hr in the presence of Escherichia coli lipopolysaccharide. Interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) bioactivities and nitrite levels in macrophage culture supernatants were quantified. Macrophage supernatants from PEMS poults had greater IL-1-mediated stimulation index compared with the macrophage supernatants from uninfected control poults in both trials. However, this increase was significant only in trial 1. IL-6 activity tested in three separate trials was significantly higher in PEMS macrophage supernatants over the controls. On the contrary, TNF-alpha production by macrophages was decreased in PEMS macrophage culture supernatants. Nitrite levels in PEMS macrophage culture supernatants were significantly higher in two out of three trials. These findings suggest that the enhanced production of proinflammatory cytokine/metabolites by activated macrophages in PEMS poults may be responsible, at least in part, for the physiological intestinal inflammation, gut motility, and anorexia that characterize this disease.  相似文献   

8.
S Dea  A Verbeek  P Tijssen 《Avian diseases》1991,35(4):767-777
Four Quebec isolates of turkey enteric coronaviruses (TCVs) and three isolates of bovine enteric coronaviruses (BCVs) were serially propagated in HRT-18 and compared for their pathogenicity in turkey embryos and turkey poults. By immunoelectron microscopy, hemagglutination-inhibition, and Western immunoblotting assays, tissue-culture-adapted Quebec TCV isolates were found to be closely related to the reference Minnesota strain of TCV and the Mebus strain of BCV. Genomic relationships between TCV isolates and the reference BCV strain were confirmed by hybridization assays with BCV-specific radiolabeled recombinant plasmids containing sequences of the N and M genes. Only TCV isolates could be propagated by inoculation in the amniotic cavity of chicken and turkey embryonating eggs, and induced clinical disease in turkey poults. Nevertheless, coronavirus particles or antigens were detected by electron microscopy or indirect enzyme-linked immunosorbent assay in the clarified intestinal contents of BCV-infected poults up to day 14 PI, and genomic viral RNA was detected by slot-blot hybridization using BCV cDNA probes.  相似文献   

9.
10.
A double-antibody ELISA for the detection of coronaviruses in intestinal contents from turkey poults with diarrhea was developed. Antibodies were raised in rabbits and guinea pigs against a Minnesota isolate of turkey enteric coronavirus (TCV) propagated in embryonating turkey eggs and were purified by density-gradient centrifugation. The specificity of antisera was confirmed by hemagglutination-inhibition and immunoelectron microscopy. Absorption of anti-TCV hyperimmune sera with egg extracts or egg ovalbumin and the use of different dilution and blocking buffers influenced the sensitivity and specificity of the ELISA. Reciprocal cross-reactivity was detected among turkey, chicken, bovine, and murine coronaviruses. Antisera to the transmissible gastroenteritis virus of swine, the rabbit enteric coronavirus, or the human coronavirus strain 299E failed to react with TCV. The TCV cross-reacted only moderately with the avian infectious bronchitis virus and the hemagglutinating encephalomyelitis virus of swine. Investigations with samples from 47 commercial turkey flocks in Quebec with episodes of transmissible enteritis revealed that the ELISA was more sensitive than was electron microscopy for detection of TCV.  相似文献   

11.
Convalescent serum given to 1-day-old poults delayed clinical signs of turkey coryza by several days and reduced mortality on infected farms. Turkey breeders immunized with cell-culture-adapted infectious bursal disease virus (IBDV) or turkey infectious bursal disease virus (TIBDV) had a marked increase in virus-neutralization (VN) antibody titers. The VN antibody titer was significantly higher in progeny poults than in poults from unimmunized breeders. Clinical turkey coryza and mortality was considerably less in poults from IBD- or TIBD-vaccinated breeders than in control poults. They also responded more favorably to hemorrhagic enteritis and fowl cholera vaccination.  相似文献   

12.
Six-day-old turkeys were inoculated with turkey coronavirus (TCV) and an enteropathogenic Escherichia coli (EPEC) (isolate R98/5) that were isolated from poult enteritis and mortality syndrome (PEMS)-affected turkeys. Turkeys inoculated with only R98/5 did not develop clinically apparent disease, and only mild disease and moderate growth depression were observed in turkeys inoculated with only TCV. Turkeys dually inoculated with TCV and R98/5 developed severe enteritis with high mortality (38/48, 79%) and marked growth depression. R98/5 infection resulted in attaching/effacing (AE) intestinal lesions characteristic of EPEC: adherence of bacterial microcolonies to intestinal epithelium with degeneration and necrosis of epithelium at sites of bacterial attachment. AE lesions were more extensive and were detected for a prolonged duration in dually inoculated turkeys compared with turkeys inoculated with only R98/5. An apparent synergistic effect in dually inoculated turkeys was indicated by increased mortality, enhanced growth depression, and enhanced AE lesion development. The results suggest that TCV promoted intestinal colonization by R98/5; however, R98/5 did not appear to alter TCV infection. The present study provides a possible etiologic explanation for PEMS.  相似文献   

13.
14.
Turkey enteric coronavirus (TCV) from intestinal contents of diarrheal poults was isolated and serially propagated in HRT-18 cells, an established cell line derived from a human rectal adenocarcinoma. In these cells, TCV induced cytopathic changes, including polykaryocytosis, which depended on trypsin in the medium and incubation at 41 C. Viral antigens could be demonstrated in the cytoplasm by immunofluorescence, and extracellular virus was detected by an ELISA and negative electron microscopy. The cell-free virus had characteristics of TCV: shape, surface projections, buoyant density of 1.18 to 1.20 g/ml in sucrose, and hemagglutination of rat RBC. The one-step growth curve was complete by postinoculation hours 14 to 16, and maximal titers reached 9 to 9.5 log10 TCID50/ml during 5 passages, after which the titer remained stable. Electron microscopic examination of infected cell monolayers revealed budding of typical coronavirus particles through intracytoplasmic membranes and accumulation of complete virus in cytoplasmic vesicles. Late in the infection, aggregated progeny vial particles were detected near the outer surface of infected cells. One-day-old turkey poults inoculated orally with tissue culture-adapted TCV isolates developed mild to severe diarrhea.  相似文献   

15.
Outbreaks of poult enteritis mortality syndrome (PEMS) continue to cause financial losses to the turkey industry. Clinically, PEMS is defined by mortality profiles, diarrhea, flock unevenness, and immunosuppression. PEMS is a very difficult disease to control and prevent. Depopulation of PEMS-affected flocks and thorough cleaning of the contaminated housing have failed to prevent infection (disease) in subsequent flock placements. The relationship of PEMS to other enteric disease complexes of young turkeys is unknown, partly because the causative agent of PEMS remains unknown. Recently, we isolated a unique astrovirus strain from the thymus and intestines of PEMS-infected poults. This strain is molecularly and serologically distinct from the astrovirus that circulated in turkeys in the 1980s. Mammalian astroviruses are very resistant to inactivation. In these studies, we examined the stability of partially purified PEMS-associated astrovirus to inactivation with heat, laboratory disinfectants, and commercial disinfectants used in commercial turkey houses in an embryonated egg model system. Similar to mammalian astroviruses, the PEMS-associated astrovirus is resistant to inactivation by heat, acidification, detergent treatment, and treatment with phenolic, quaternary ammonium, or benzalkonium chloride-based products. Only treatment with formaldehyde, beta-propriolactone, or the peroxymonosulfate-based product Virkon S completely inactivated the astrovirus in the embryo model. These studies provide an alternate means to potentially control at least one virus associated with PEMS through the use of specific disinfectants.  相似文献   

16.
2003年国内某火鸡场发生了一种以侵害15~25日龄雏火鸡为主的急性传染病,主要表现为腹泻,十二指肠、直肠充血和出血,盲肠肿大,肠道内充满黄绿色内容物,死亡率约为10%~20%。取病死火鸡肝、脾、肠匀浆,取上清液通过尿囊腔接种15日龄SPF鸡胚。连续传代至第5代,收集接种后72h内死亡或存活鸡胚的卵黄和肠道,用于病毒分离和提纯。试验中发现该病毒能凝集兔红细胞,不能凝集鸡红细胞。经电镜观察,在病毒提纯液中发现有圆形或椭圆形、带花冠状纤突的病毒粒子,初步诊断为火鸡冠状病毒感染。进而设计针对火鸡冠状病毒S2基因引物,进行RT-PCR扩增,结果扩增出预期大小的片段。运用所分离病毒进行动物回归试验,感染火鸡出现与自然病例一致的临床症状和病理变化,并能从发病火鸡分离出该病毒。以上结果表明所分离的病毒为火鸡冠状病毒。此病毒的分离在国内尚属首例。  相似文献   

17.
Avian pneumoviruses (APVs) are RNA viruses responsible for upper respiratory disease in poultry. Experimental infections are typically less severe than those observed in field cases. Previous studies with APV and Escherichia coli suggest this discrepancy is due to secondary agents. Field observations indicate APV infections are more severe with concurrent infection by Newcastle disease virus (NDV). In the current study, we examined the role of lentogenic NDV in the APV disease process. Two-week-old commercial turkey poults were infected with the Colorado strain of APV. Three days later, these poults received an additional inoculation of either NDV or E. coli. Dual infection of APV with either NDV or E. coli resulted in increased morbidity rates, with poults receiving APV/NDV having the highest morbidity rates and displaying lesions of swollen infraorbital sinuses. These lesions were not present in the single APV, NDV, or E coli groups. These results demonstrate that coinfection with APV and NDV can result in clinical signs and lesions similar to those in field outbreaks of APV.  相似文献   

18.
The pathogenesis of hemorrhagic enteritis in turkey poults infected with hemorrhagic enteritis virus (HEV) at 3 days or at 2 or 5 weeks of age was compared with pathogenesis in poults that had been chemically bursectomized neonatally and exposed to cell-culture-propagated virus at 2 or 5 weeks of age. Conventional poults exposed to HEV at 2 or 5 weeks developed clinical disease, and mortality ranged from 38% to 100%. In addition to the splenic and intestinal lesions usually seen with HEV infection, the pancreas, bursa of Fabricius, and thymus were also affected. In contrast, although they were free from detectable maternal antibody, poults infected with HEV at 3 days of age failed to develop clinical disease or mortality; however, virus was demonstrated by histological and electron microscopic examinations in spleens of these poults. Neonatal chemical bursectomy completely prevented the clinical signs, gross lesions, and mortality induced by HEV in poults at 2 or 5 weeks of age. These findings strongly suggest that an intact bursa is necessary for HEV to induce disease in turkeys.  相似文献   

19.
20.
A small round virus associated with enteritis in turkey poults   总被引:1,自引:0,他引:1  
In a natural outbreak of enteric disease in turkey poults, Salmonella, group D rotavirus, astrovirus, and a small (18-24 nm) round virus were detected in the gut contents. Except for the small virus, the pathogenic potential of the other agents is recognized. In experiments, the small round virus was shown to be transmissible and pathogenic in specific-pathogen-free turkey poults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号