首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nutritional characteristics of buckwheat starch were studied to identify the possibility for reduced postmeal metabolic responses to various buckwheat products. The in vitro rate of starch hydrolysis and resistant starch (RS) formation in boiled buckwheat groats and in a series of breads, baked with 30-70% of buckwheat flour (BWF) or groats (BWG), respectively, were evaluated in vitro. In parallel, postprandial glucose and insulin responses and also the satiety score to BWG and wheat bread with 50% BWG as compared with the reference white wheat bread (WWB) were studied in healthy humans. The highest concentration of RS was found in boiled BWG (6% total starch basis). The RS level in bread products based on different proportions of BWF or BWG (30-70%) varied from 0.9 to 4.4%. The rate of in vitro amylolysis was significantly lower (P < 0.05) in all buckwheat products in comparison with the reference WWB. The calculated hydrolysis indices (HI) were lowest in boiled BWG (HI = 50) and in bread with 70% BWG (HI = 54). Consumption of boiled BWG or bread based on wheat flour and 50% BWG induced significantly lower postprandial blood glucose and insulin responses compared with the WWB. The calculated glycemic and insulinemic indices (GI and II) for boiled BWG were 61 and 53 and for the buckwheat bread, 66 and 74, respectively. The highest satiety score was found with boiled BWG. It is concluded that buckwheat has potential use in the design of foods with lower GI properties.  相似文献   

2.
This article aimed at investigating the synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation of white wheat, wholemeal wheat, and rye flours. Sourdough lactic acid bacteria, selected previously for proteinase and peptidase activities toward wheat proteins or for the capacity of synthesizing GABA, were used. The highest ACE-inhibitory activity was found by fermenting flour under semiliquid conditions (dough yield 330) and, especially, by using wholemeal wheat flour. Fourteen peptides, not previously reported as ACE-inhibitory, were identified from the water/salt-soluble extract of wholemeal wheat sourdough (IC 50 0.19-0.54 mg/mL). The major part of the identified peptides contained the well-known antihypertensive epitope VAP. The synthesis of GABA increased when the dough yield was decreased to 160. The highest synthesis of GABA (258.71 mg/kg) was found in wholemeal wheat sourdough.  相似文献   

3.
To evaluate the effect of storage temperature, the degradation kinetics of carotenoids in wholemeal and white flour of einkorn cv. Monlis and bread wheat cv. Serio, stored at -20, 5, 20, 30, and 38 degrees C, was assessed by normal-phase high-performance liquid chromatography. In Monlis, the carotenoids content (8.1 and 9.8 mg/kg for wholemeal and white flour, respectively) was 8-fold higher than in Serio (1.0 and 1.1 mg/kg). Only lutein and zeaxanthin were detected in bread wheat, while significant quantities of (alpha and beta)-carotene and beta-cryptoxanthin were observed in einkorn. Carotenoids degradation was influenced by temperature and time, following first-order kinetics. The degradation rate was similar in wholemeal and white flour; however, loss of lutein and total carotenoids was faster in Serio than in Monlis. The activation energy E(a) ranged from 35.2 to 52.5 kJ/mol. Temperatures not exceeding 20 degrees C better preserve carotenoids content and are recommended for long-term storage.  相似文献   

4.
《Cereal Chemistry》2017,94(6):991-1000
Wheat, an important crop in North Dakota and the United States, is often used for bread. Health concerns related to chronic diseases have caused a shift toward consumption of whole wheat bread. There has been some indication that the rate and amount of starch digestibility of whole wheat breads may be lower than for their refined flour counterparts. This research investigated the components of whole wheat bread that may reduce starch digestibility and impact nutritional quality. Six formulations of flour were used, which included two refined flours, two whole wheat flours, and two whole wheat flours with added starch. The starch was added to whole wheat flours to increase the starch level to that of the refined flour so that we can determine whether or not the dilution of the starch in whole wheat bread was a factor in lowering the estimated glycemic index (eGI) of whole wheat bread. White and whole wheat flours and breads were evaluated for chemical composition, baking quality by 1 , and eGI by the Englyst assay. Whole wheat breads had significantly (P < 0.05) higher mineral, protein, arabinoxylan, and phenolic acid contents, as well as significantly (P < 0.05) lower eGI. The starch molecular weight was also significantly (P < 0.05) higher for whole wheat and whole wheat + starch breads compared with white breads. The eGIs of refined flour breads were 93.1 and 92.7, whereas the eGIs of whole wheat and whole wheat + starch breads ranged from 83.5 to 85.1. Overall, several factors in the whole wheat bread composition can be found to affect the quality and starch hydrolysis.  相似文献   

5.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

6.
From a nutritional point of view, cereal lipids include valuable molecules, such as essential fatty acids, phytosterols, and fat-soluble vitamins. Spelt (Triticum spelta L.) is an alternative hulled bread cereal mostly grown in Belgium, where it is mainly intended for animal feed but should increasingly be used for human consumption. The present research focused on phytosterol quantification by LC/APCI-MS2 in saponified wholemeal extracts of 16 dehulled spelt and 5 winter wheat (Triticum aestivum L.) varieties grown in Belgium during 2001-2002 at the same location. Glycosylated sterols and free and formerly esterified sterols could be determined in saponified extracts. Results show that the mean phytosterol content is comparable in both cereals (whereas other lipids, such as oleic and linoleic acids, are increased in spelt wholemeal): spelt extract has, on average, 527.7 microg of free and esterified sterols g(-1) of wholemeal and 123.8 microg of glycosylated sterols g(-1) of wholemeal versus 528.5 and 112.6 microg x g(-1) in winter wheat (values not corrected for recoveries). This is the first report on the application and validation of an LC/MS2 method for the quantification of phytosterols in spelt and winter wheat.  相似文献   

7.
Rye products typically induce low insulin responses and appear to facilitate glucose regulation. The objective of this study was to investigate differences in postprandial glucose, insulin, and satiety responses between breads made from five rye varieties. Breads made from whole grain rye (Amilo, Rekrut, Dankowski Zlote, Nikita, and Haute Loire Pop) or a white wheat bread (WWB) were tested in a randomized cross-over design in 14 healthy subjects (50 g available starch). Metabolic responses were also related to the composition of dietary fiber and bioactive compounds in the breads and to the rate of in vitro starch hydrolysis. The Amilo and Rekrut rye breads induced significantly lower insulin indices (II) than WWB. Low early postprandial glucose and insulin responses (tAUC 0-60 min) were related to higher amounts of caffeic, ferulic, sinapic, and vanillic acids in the rye breads, indicating that the phenolic acids in rye may influence glycemic regulation. All rye breads induced significantly higher subjective feelings of fullness compared to WWB. A low II was related to a higher feeling of fullness and a lower desire to eat in the late postprandial phase (180 min). The data indicate that some rye varieties may be more insulin-saving than others, possibly due to differences in dietary fiber, rate of starch hydrolysis, and bioactive components such as phenolic acids.  相似文献   

8.
Within the HEALTHGRAIN diversity screening program, the variation in the content of dietary fiber and components thereof in different types of wheat was studied. The wheat types were winter (131 varieties) and spring (20 varieties) wheats (both Triticum aestivum L., also referred to as common wheats), durum wheat (Triticum durum Desf., 10 varieties), spelt wheat (Triticum spelta L., 5 varieties), einkorn wheat (T. monococcum L., 5 varieties), and emmer wheat (Triticum dicoccum Schubler, 5 varieties). Common wheats contained, on average, the highest level of dietary fiber [11.5-18.3% of dry matter (dm)], whereas einkorn and emmer wheats contained the lowest level (7.2-12.8% of dm). Intermediate levels were measured in durum and spelt wheats (10.7-15.5% of dm). Also, on the basis of the arabinoxylan levels in bran, the different wheat types could be divided this way, with ranges of 12.7-22.1% of dm for common wheats, 6.1-14.4% of dm for einkorn and emmer wheats, and 10.9-13.9% of dm for durum and spelt wheats. On average, bran arabinoxylan made up ca. 29% of the total dietary fiber content of wheat. In contrast to what was the case for bran, the arabinoxylan levels in flour were comparable between the different types of wheat. For wheat, in general, they varied between 1.35 and 2.75% of dm. Einkorn, emmer, and durum wheats contained about half the level of mixed-linkage beta-glucan (0.25-0.45% of dm) present in winter, spring, and spelt wheats (0.50-0.95% of dm). All wheat types had Klason lignin, the levels of which varied from 1.40 to 3.25% of dm. The arabinoxylan contents in bran and the dietary fiber contents in wholemeal were inversely and positively related with bran yield, respectively. Aqueous wholemeal extract viscosity, a measure for the level of soluble dietary fiber, was determined to large extent by the level of water-extractable arabinoxylan. In conclusion, the present study revealed substantial variation in the contents of dietary fiber and constituents thereof between different wheat types and varieties.  相似文献   

9.
Pup‐loaf bread was made with 10, 30, and 50% substitution of flour with wheat starch phosphate, a cross‐linked resistant starch (XL‐RS4), while maintaining flour protein level at 11.0% (14% mb) by adding vital wheat gluten. Bread with 30% replacement of flour with laboratory‐prepared XL‐RS4 gave a specific volume of 5.9 cm3/g compared with 6.3 g/cm3 for negative control bread (no added wheat starch), and its crumb was 53% more firm than the control bread after 1 day at 25°C, but 13% more firm after 7 days. Total dietary fiber (TDF) in one‐day‐old bread made with commercial XL‐RS4 at 30% flour substitution increased 3–4% (db) in the control to 19.2% (db) in the test bread, while the sum of slowly digestible starch (SDS) plus resistant starch (RS), determined by a modified Englyst method, increased from 24.3 to 41.8% (db). The reference amount (50 g, as‐is) of that test bread would provide 5.5 g of dietary fiber with 10% fewer calories than control bread. Sugar‐snap cookies were made at 30 and 50% flour replacement with laboratory‐prepared XL‐RS4, potato starch, high‐amylose (70%) corn starch, and commercial heat‐moisture‐treated high‐amylose (70%) corn starch. The shape of cookies was affected by the added starches except for XL‐RS4. The reference amount (30 g, as‐is) of cookies made with commercial XL‐RS4 at 30% flour replacement contained 4.3 g (db) TDF and 3.4 g (db) RS, whereas the negative control contained 0.4 g TDF and 0.6 g RS. The retention of TDF in the baked foods containing added XL‐RS4 was calculated to be >80% for bread and 100% for cookies, while the retention of RS was 35–54% for bread and 106–113% for cookies.  相似文献   

10.
Rye breads made from commercial rye blends lower the postprandial insulin demand and appear to facilitate glucose regulation. However, differences in metabolic responses may occur between rye varieties. In the present work, five rye varieties (Amilo, Evolo, Kaskelott, Picasso. and Vicello) and a commercial blend of rye grown in Sweden were investigated with regard to their postprandial insulin, glucose, and appetite regulation properties in a randomized crossover study in 20 healthy subjects. The rye flours were baked into whole grain breads, and a white wheat bread (WWB) was used as reference (50 g of available starch). Picasso and Vicello rye bread showed lower glycemic indices (GIs) compared with WWB (80 and 79, respectively) (P < .0.05). In addition to the GI, two measures of the glycemic profile (GP and GP(2)) were calculated by dividing the incremental duration of the plasma glucose curve with the incremental glucose peak and squared incremental glucose peak, respectively. Vicello and Picasso ryes were characterized by a higher GP(2) than that of the WWB, suggesting a better regulated course of glycemia. Rye bread made from not only Vicello and Picasso but also Amilo and Kaskelott displayed significantly lower insulin indices (IIs) than WWB (74-82). A high GP and GP(2) and a low GI were related to a lower II and insulin incremental peak. A high content of insoluble fibers and a high GP(2) were related to a higher subjective satiety in the early and late postprandial phase (tAUC 0-60 min and tAUC 120-180 min, respectively). The results suggest that there may be differences in the course of glycemia following different rye varieties, affecting postprandial insulin responses and subjective satiety.  相似文献   

11.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

12.
Flours from five spelt cultivars grown over three years were evaluated as to their breadbaking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions, and pasting properties. Milled flour showed highly variable protein content and was higher than hard winter wheat, with short dough‐mix times indicating weak gluten. High protein cultivars gave good crumb scores, some of which surpassed the HRW baking control. Loaf volume was correlated to protein and all spelt cultivars were at least 9–51% lower than the HRW control. Isolated starch properties revealed an increase in amylose in the spelt starches of 2–21% over the hard red winter wheat (HRW) control. Negative correlations were observed for the large A‐type granules to bread crumb score, amylose level, and final pasting viscosity for cultivars grown in year 1999 and to pasting temperature in 1998 samples. Positive correlations were found for the small B‐ and C‐type granules relative to crumb score, loaf volume, amylose, and RVA final pasting viscosity for cultivars grown in 1999, and to RVA pasting temperature for samples grown in 1998. The environmental impact on spelt properties seemed to have a greater effect than genetic control.  相似文献   

13.
Thirteen different wheat cultivars were selected to represent GBSS mutations: three each of wildtype, axnull, and bxnull, and two each of 2xnull and waxy. Starch and A‐ and B‐granules were purified from wheat flour. Hearth bread loaves were produced from the flours using a small‐scale baking method. A‐granules purified from wildtype and partial waxy (axnull, bxnull, and 2xnull) starches have significantly higher gelatinization enthalpy and peak viscosity compared with B‐granules. A‐ and B‐granules from waxy starch do not differ in gelatinization, pasting, and gelation properties. A‐ and B‐granules from waxy starch have the highest enthalpy, peak temperature, peak viscosity, breakdown, and lowest pasting peak time and pasting temperature compared with A‐ and B‐granules from partial waxy and wildtype starch. Waxy wheat flour has much higher water absorption compared with partial waxy and wildtype flour. No significant difference in hearth bread baking performance was observed between wildype and partial waxy wheat flour. Waxy wheat flour produced hearth bread with significantly lower form ratio, weight, a more open pore structure, and a bad overall appearance. Baking with waxy, partial waxy, and wildtype wheat flour had no significant effect on loaf volume.  相似文献   

14.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

15.
《Cereal Chemistry》2017,94(6):1037-1044
Spelt grain has high nutritional value, but the rheological properties of dough made from spelt flour remain insufficiently investigated. Most studies have focused on comparing various breeding lines and accessions of spelt with selected conventional varieties. The aim of this study was to analyze the rheological properties of dough made from the flour of 14 winter and one spring spelt varieties cultivated today compared with two reference varieties of common wheat. The analyses were performed by the Mixolab test. In comparison with common wheat, spelt varieties were characterized by significantly lower values of the gluten index (16–42 versus 87%), Zeleny index (23–28 versus 46 cm3), and kernel vitreousness (5–35 versus 51%). Doughs produced from spelt and common wheat flour differed significantly it their rheological properties. Mixolab profiles demonstrated significant variations in the values of the retrogradation index (2–8), amylase index (1–8), water absorption index (0–6), and gluten+ index (1–7) across the tested spelt varieties. Principal component analysis revealed that all six Mixolab indicators strongly discriminated wheat and spelt varieties. The results clearly indicate that some modern varieties of spelt have high breadmaking potential. They are also characterized by relatively high variation in the analyzed technological properties of grain and flour.  相似文献   

16.
The present investigation aims at understanding the role of chemically modified starch on the firmness of fresh or stale bread. Bread was prepared from wheat flour or substituted wheat flour that contained 18% chemically modified tapioca starch and 2% vital gluten. Hydroxypropylated tapioca starch (HTS), acetylated tapioca starch (ATS), phosphorylated cross‐linked tapioca starch (PTS), and native tapioca starch (NTS) were tested. Bread prepared from the substituted flour with PTS showed a firmer texture on the day of baking compared with bread prepared from NTS, HTS, and ATS. PTS retained its granular structure in the gluten network after baking and seemed to play the role of filler particles in the gluten matrix, thereby increasing firmness of fresh bread crumb. Bread prepared from the substituted flour with HTS or ATS firmed at a lower rate and showed a lower endothermic melting enthalpy of amylopectin after three days of storage compared with NTS or PTS. These findings suggest that the staling of bread containing chemically modified tapioca starch involves recrystallization of amylopectin.  相似文献   

17.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

18.
A new method, a magnetic resonance imaging (MRI) technique characterized by T(2) relaxation time, was developed to study the water migration mechanism between arabinoxylan (AX) gels and gluten matrix in a whole wheat dough (WWD) system prepared from whole wheat flour (WWF) of different particle sizes. The water sequestration of AX gels in wheat bran was verified by the bran fortification test. The evaluations of baking quality of whole wheat bread (WWB) made from WWF with different particle sizes were performed by using SEM, FT-IR, and RP-HPLC techniques. Results showed that the WWB made from WWF of average particle size of 96.99 μm had better baking quality than those of the breads made from WWF of two other particle sizes, 50.21 and 235.40 μm. T(2) relaxation time testing indicated that the decreased particle size of WWF increased the water absorption of AX gels, which led to water migration from the gluten network to the AX gels and resulted in inferior baking quality of WWB.  相似文献   

19.
Different types of novel wheat lines with different starch contents and amylose/amylopectin ratios, relating to defined alterations in the number and activity of starch synthase IIa genes, were processed by pilot-plant extrusion. Two types of products were produced: pure wholemeal products and breakfast cereals made from wholemeal/maize blends. Lower apparent shear viscosity was obtained in the extruder with lower starch content and higher amylose/amylopectin ratio flours (SSIIa-deficient line). The bulk density of the products decreased with increasing extrusion temperature and was always higher for the triple-null line. The bulk density was not completely explained by the melt shear viscosity, suggesting the importance of the fillers (fibers, brans) in the process of expansion and structure acquisition. The different mechanical properties were explained by the density and by the material constituting the cell walls. Enzyme-resistant starch (RS) content and hydrolysis index (HI) were not correlated to the extrusion temperature, but RS was higher in pure wholemeal products and in the SSIIa-deficient line. These results are discussed in terms of starch molecular architecture and product microstructure.  相似文献   

20.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号