首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory incubation experiment was conducted to study the effect of NH 4 + fixation/defixation on the added N interaction (ANI) in three Illinois Mollisols fertilized with 100 or 200 mg N kg-1 soil. A positive ANI was observed in all three soils, which was greater at the higher rate of applied N. However, very little exchange was observed between applied 15NH 4 + and the native clay-fixed NH 4 + , and the ANI observed were attributed largely to microbial immobilization-mineralization. The results suggested that variations in the NH 4 + fixation capacity of soils will not have a significant bearing on the interpretation of data obtained from studies of the ANI.  相似文献   

2.
Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.  相似文献   

3.
N mineralization capacity and its main controlling factors were studied in a large variety (n=112) of native (forest, bush) and agricultural (pasture, cultivated) soils from several climatic zones in Spain. The available inorganic N content, net N mineralization, and net N mineralization rate were determined after 6 weeks of aerobic incubation. NH inf4 sup+ –N largely predominated over NO inf3 sup- -N (ratio near 10:1) except in some agricultural soils. Net N mineralization predominated (83% of soils) over net N immobilization, which was more frequent in agricultural soils (25%) than in native soils (9%). In forest soils, both net N mineralization and the net N mineralization rate were significantly higher than in the other soil groups. The net N mineralization rate of pasture and cultivated soils was similar to that of bush soils, but available inorganic N was lower. The net N mineralization rate decreased in the order: soils over acid rocks>soils over sediments>soils over basic rocks or limestone; moreover, the highest net N mineralization and available inorganic N were found in soils over acid rocks. The highest N mineralization was found in soils with low C and N contents, particularly in the native soils, in which N mineralization increased as the C:N ratio increased. N mineralization was higher in soils with a low pH and base saturation than in soils with high pH and base saturation values, which sometimes favoured N immobilization. Soils with an Al gel content of >1% showed lower net N mineralization rates than soils with Al gel contents of <1%, although net N mineralization and available inorganic N did not differ between these groups. The net N mineralization rate in silty soils was significantly lower than in sandy and clayey soils, although soil texture only explained a low proportion of the differences in N mineralization between soils.  相似文献   

4.
15NO?3 was immobilized in a calcareous sandy soil and a calcareous clay soil each incubated with glucose and wheat straw. Net mineralization of organic-15N was more rapid in the sandy soil, irrespective of C amendment, and in soils amended with glucose. Intermittent drying and wetting of soils during incubation stimulated mineralization of 15N-labelled and native soil organic-N in all treatments. The availability (percentage mineralization) of recently-immobilized 15N consistently exceeded that of the native soil N. Ratios of the availability of labelled and unlabelled N were similar in the sandy and clay soils but varied according to C amendment, drying and wetting cycle and incubation period.Changes in the distribution of immobilized N amongst soil extracts and soil fractions of different particle size and density were determined during periods of net N mineralization. In straw-amended soils, the organic-15N of a light fraction, sp.gr. < 1.59, decomposed relatively rapidly during the late mineralization period. Decreases of organic 15N of the fine clay fraction were also recorded. In glucose-amended soils, net N mineralization was accompanied by significant decreases in the concentrations of organic-15N of the silt and fine clay fractions.Drying and rewetting of soils hastened or magnified changes occurring in the organic-15N of soil fractions, but qualitatively, the pattern of change was similar to that observed with soils incubated under uniformly-moist conditions.The percentage distribution of labelled and unlabelled N suggested that in the long term, the silt fraction will accumulate an increasing proportion of the more stable nitrogenous residues.  相似文献   

5.
Immobilization of N was measured in a fumigated and in an unfumigated soil by adding (15NH4)2SO4 and following the disappearance of inorganic label from the soil solution and its simultaneous conversion to soil organic N. Calculations based on the measurement of organically-bound 15N gave more consistent values for immobilization than did calculations based on the measurement of the disappearance of label from solution. The fumigated soil immobilized 6.6 μg N g?1 N g?1 soil in 10 days at 25°C, the unfumigated control 4.8 μg. The corresponding gross mineralization rates were 34.9 and 5.6 μg N g?1 soil in 10 days.Addition of 58 μg N as (15NH4)2SO4 to the fumigated soil increased the quantity of the ynlabelled NH4-N extracted at the end of 10 days from 33.8 to 37.8 μg Ng?1 soil, i.e. there was a positive Added Nitrogen Interaction (ANI). The added labelled N produced this ANI, not by increasing the rate of mineralization of organic N, but by standing proxy for unlabelled N that otherwise would have been immobilized.A procedure for calculating biomass N from the size of the flush of mineral N caused by fumigation is proposed. Biomass N (BN) is calculated from the relationship BN = F'N/0.68 where F'N is [(N in fumigated soil incubated for 10 days — (N in unfumigated soil incubated for 10 days)].  相似文献   

6.
Tillage systems influence soil properties and may influence the availability of applied and mineralized soil N. This laboratory study (20°C) compared N cycling in two soils, a Wooster (fine, loamy Typic Fragiudalf) and a Hoytville (fine, illitic Mollic Epiaqualf) under continuous corn (Zea mays) production since at least 1963 with no-tillage (NT), minimum (CT) and plow tillage (PT) management. Fertilizer was added at the rate of 100 mg 15N kg–1–1 soil as 99.9% 15N as NH4Cl or Ca(NO3)2 and the soils were incubated in leaching columns for 1 week at 34 kPa before being leached periodically with 0.05 M CaCl2 for 26 weeks. As expected, the majority of the 15NO3 additions were removed from both soils with the first leaching. The majority of applied 15NH4+ additions were recovered as 15NO3 by week 5, with the NT soils demonstrating faster nitrification rates compared with soils under other tillage practices. For the remaining 22 weeks, only low levels of 15NO3 were leached from the soils regardless of tillage management. In the coarser textured Wooster soils (150 g clay kg–1), mineralization of native soil N in the fertilized soils was related to the total N content (r2 0.99) and amino acid N (r2 0.99), but N mineralization in the finer textured Hoytville (400 g clay kg–1) was constant across tillage treatments and not significantly related to soil total N or amino acid N content. The release of native soil N was enhanced by NH4+ or NO3 addition compared to the values released by the unfertilized control and exceeded possible pool substitution. The results question the use of incubation N mineralization tests conducted with unfertilized soils as a means for predicting soil N availability for crop N needs.  相似文献   

7.
The uptake of labelled and unlabelled N by wheat was measured in pot and field experiments with 15N-labelled fertilizer. Soils from two sites on the same series were used in the pot experiment; one had been bare-fallowed for 22 years and contained 1.6% organic C, the other had been under grass for many years and contained 3.8% organic C. Fertilizer N increased the uptake of unlabelled soil N in both soils, i.e. there was a positive ‘added nitrogen interaction’ (ANI). There was no ANI in the field experiment. A simulation model is used to show how positive ANIs can arise as a result of ‘pool substitution’—labelled inorganic fertilizer N standing proxy for unlabelled inorganic soil N that would otherwise have been immobilized. In the low-organic fallow soil, pool substitution accounted for the whole of the observed ANI and fertilizer N did not enhance either gross or net mineralization of soil N. Pool substitution also operated in the high organic grassland soil, but here net mineralization of soil N increased with increasing additions of fertilizer, giving rise to a ‘real’ ANI in addition to the larger ‘apparent’ ANI caused by pool substitution. This increase in net mineralization is probably caused by a decrease in immobilization of N as fertilizer N additions increase, not by an increase in gross mineralization of soil N. For pool substitution to operate, fertilizer N and soil inorganic N must occupy the same pool. This occurred in the pot experiment but not in the field experiment, where fertilizer and soil inorganic N remained separate and there was no ANI. When pool substitution occurs, fertilizer use efficiency is predictably lower as measured by the isotopic method than as measured by the conventional non-isotopic procedure.  相似文献   

8.
无机氮与蔬菜废弃物耦合对土壤氮矿化的影响   总被引:1,自引:0,他引:1  
为探明有机废弃物添加量与不同无机氮水平耦合对土壤氮矿化的影响,设计了3个甘蓝废弃叶添加量[B1:200 g.kg 1(土),B2:400 g.kg 1(土),B3:550 g.kg 1(土)]和4个无机氮水平[N0:0 mg.kg 1(土),N1:25mg.kg 1(土),N2:50 mg.kg 1(土),N3:100 mg.kg 1(土)]交互的控制培养试验(25℃,65%的田间持水量)。试验结果显示:各氮处理下土壤净累积氮矿化量是空白对照的4~5倍,N1水平下土壤净累积氮矿化量显著高于其他氮水平。各甘蓝废弃叶添加量处理下土壤净累积氮矿化量是空白对照的3~5倍,且B2添加量下土壤净累积氮矿化量显著高于B1和B3。统计分析表明,氮处理和甘蓝废弃叶添加量之间的交互效应不显著(P=0.275),甘蓝废弃叶的添加是影响氮矿化的主要因素(Eta2=0.16),而供氮水平为次要因素(Eta2=0.07)。B1添加量下,培养前期(0~20 d)土壤净累积矿化量逐渐升高,后期保持稳定水平;但B2和B3添加量下,培养前期(30 d)土壤呈现矿化、固持、再矿化现象,后期土壤净累积矿化量逐渐升高。氮矿化速率结果说明,甘蓝废弃叶添加后氮素矿化主要发生在培养前30 d。对培养期间土壤净累积氮矿化量随时间变化做一级动力方程模拟,拟合效果良好(R2=0.62~0.89)。  相似文献   

9.
Laboratory incubation experiments were conducted in soil to study the influence of the insecticide Baythroid on immobilization-remineralization of added inorganic N, mineralization of organic N, and nitrification of added NH inf4 su+ -N. Baythroid was applied at 0, 0.4, 0.8, 1.6, 3.2, and 6.4 g g-1 soil (active ingredient basis). The treated soils were incubated at 30°C for different time intervals depending upon the experiment. The immobilization and mineralization of N were significantly increased in the presence of Baythroid, the effect being greater with higher doses of the insecticide. Conversely, nitrification was retarded at lower doses of Baythroid and significantly inhibited at higher doses. The results of these studies suggest that excessive amonts of insecticide residues affect different microbial populations differently, leading to changes in nutrient cycling.  相似文献   

10.
Abstract

Laboratory incubation and greenhouse experiments were conducted with two soils having contrasting physico‐chemical characteristics to evaluate nitrogen (N) mineralization, immobilization in soil microbial biomass, and accumulation in Japanese mint (Mentha arvensis L.) using labeled (15NH4)2SO4, applied at 0, 50, and 100 mg#lbkg‐1 soil. Rate of mineralization in soils varied from 0.08 to 2.21 μg#lbg‐1#lbday‐1. Fertilizer application increased the mineralization of native soil N. About 22 to 60% of the applied 15N was recovered in the soil microbial biomass during the growth period of mint (January‐June). Relative contribution of fertilizer 15N towards total N uptake by mint at maturity was 42–54% in soil I and 35 to 55% in soil II. Contribution of soil N towards total N accumulation increased with the doses of 15N application.  相似文献   

11.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

12.
A sandy loam soil was mixed with three different amounts of quartz sand and incubated with (15NH4)2SO4 (60 g N g-1 soil) and fresh or anaerobically stored sheep manure (60 g g-1 soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days of incubation at 20°C. After 7 days, the amount of unlabelled inorganic N in the manure-treated soils was 6–10 g N g-1 soil higher than in soils amended with only (15NH4)2SO4. However, due to immobilization of labelled inorganic N, the resulting net mineralization of N from manure was insignificant or slightly negative in the three soil-sand mixtures (100% soil+0% quartz sand; 50% soil+50% quartz sand; 25% soil+75% quartz sand). After 84 days, the cumulative CO2 evolution and the net mineralization of N from the fresh manure were highest in the soil-sand mixutre with the lowest clay content (4% clay); 28% fo the manure C and 18% of the manure N were net mineralized. There was no significant difference between the soil-sand mixtures containing 8% and 16% clay, in which 24% of the manure C and -1% to 4% of the manure N were net mineralized. The higher net mineralization of N in the soil-sand mixture with the lowest clay content was probably caused by a higher remineralization of immobilized N in this soil-sand mixture. Anaerobic storage of the manure reduced the CO2 evolution rates from the manure C in the three soil-sand mixtures during the initial weeks of decomposition. However, there was no effect of storage on net mineralization of N at the end of the incubation period. Hence, there was no apparent relationship between net mineralization of manure N and C.  相似文献   

13.
The effects of 15N-labelled urea, (NH4)2SO4 and KNO3 on immobilization, mineralization, nitrification and ammonium fixation were examined under aerobic conditions in an acid tropical soil (pH 4.0) and in a neutral temperate soil (pH 6.8). Urea, (NH4)2SO4 and KNO3 slightly increased net mineralization of soil organic nitrogen in both soils. There was also an apparent Added Nitrogen Interaction (ANI) i.e. added labelled NH4-N stood proxy for unlabelled NH4-N that would otherwise have been immobilized. So far as immobilization and nitrification were concerned, urea and (NH4)2SO4 behaved very similarly in each soil. Immobilization of NO3-N was negligible in both soils. Some of the added labelled NH4-N was rapidly fixed, more by the temperate soil than by the tropical soil. This labelled fixed NH4-N decreased during incubation, in contrast to labelled organic N, which did not decline.  相似文献   

14.
Nitrogen mineralization and immobilization were investigated in two soils incubated with ammonium sulphate or pig slurry over a range of temperatures and moisture contents. A reduction in the mineralization of soil organic N was observed in soils incubated with 100 μg NH4+-Ng?1 soil as ammonium sulphate at 30°C but not at lower temperatures. Addition of 100 μg NH4+-N g?1 soil as pig slurry resulted in a period of nett immobilization lasting up to 30 days at 5°C. Although the length of the immobilization phase was shorter at higher temperatures the total N immobilized was similar. The subsequent rate of mineralization in slurry-treated soils was not significantly greater (P = 0.05) than in untreated soils. There was no evidence of any subsequent increased mineralization arising from the immobilized N or slurry organic N for up to 175 days. The rate of immobilization was found to increase with increasing moisture content, though the period of nett immobilization was shorter, so that the amount of N immobilized was similar over a range of moisture contents from 10 to 40%. Approximately 40% of the NH4+-N in the slurry was immobilized under the incubation conditions used.  相似文献   

15.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

16.
Changes in 15N abundance and amounts of biologically active soil nitrogen   总被引:1,自引:0,他引:1  
 Estimation of the capacity of soils to supply N for crop growth requires estimates of the complex interactions among organic and inorganic N components as a function of soil properties. Identification and measurement of active soil N forms could help to quantify estimates of N supply to crops. Isotopic dilution during incubation of soils with added 15NH4 + compounds could identify active N components. Dilution of 15N in KCl extracts of mineral and total N, non-exchangeable NH44 +, and N in K2SO4 extracts of fumigated and non-fumigated soil was measured during 7-week incubation. Samples from four soils varying in clay content from 60 to 710 g kg–1 were used. A constant level of 15N enrichment within KCl and K2SO4 extracted components was found at the end of the incubation period. Total N, microbial biomass C and non-exchangeable NH4 + contents of the soils were positively related to the clay contents. The mineralized N was positively related to the silt plus clay contents. The active soil N (ASN) contained 28–36% mineral N, 29–44% microbial biomass N, 0.3–5% non-exchangeable NH4 + with approximately one third of the ASN unidentified. Assuming that absolute amounts of active N are related to N availability, increasing clay content was related to increased N reserve for crop production but a slower turnover. Received: 7 July 1998  相似文献   

17.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

18.
Measurements of N transformation rates in tropical forest soils are commonly conducted in the laboratory from disturbed or intact soil cores. On four sites with Andisol soils under old-growth forests of Panama and Ecuador, we compared N transformation rates measured from laboratory incubation (at soil temperatures of the sites) of intact soil cores after a period of cold storage (at 5 °C) with measurements conducted in situ. Laboratory measurements from stored soil cores showed lower gross N mineralization and NH4+ consumption rates and higher gross nitrification and NO3 immobilization rates than the in-situ measurements. We conclude that cold storage and laboratory incubation change the soils to such an extent that N cycling rates do not reflect field conditions. The only reliable way to measure N transformation rates of tropical forest soils is in-situ incubation and mineral N extraction in the field.  相似文献   

19.
Displacement of NH4+ fixed in clay minerals by fertilizer 15NH4+ is seen as one mechanism of apparent added nitrogen interactions (ANI), which may cause errors in 15N tracer studies. Pot and incubation experiments were carried out for a study of displacement of fixed NH4+ by 15N‐labeled fertilizer (ammonium sulfate and urea). A typical ANI was observed when 15N‐labeled urea was applied to wheat grown on soils with different N reserves that resulted from their long‐term fertilization history: Plants took up more soil N when receiving fertilizer. Furthermore, an increased uptake of 15N‐labeled fertilizer, induced by increasing unlabeled soil nitrogen supply, was found. This ANI‐like effect was in the same order of magnitude as the observed ANI. All causes of apparent or real ANI can be excluded as explanation for this effect. Plant N uptake‐related processes beyond current concepts of ANI may be responsible. NH4+ fixation of fertilizer 15NH4+ in sterilized or non‐sterile, moist soil was immediate and strongly dependent on the rate of fertilizer added. But for the tested range of 20 to 160 mg 15NH4+‐N kg–1, the NH4+ fixation rate was low, accounting for only up to 1.3 % of fertilizer N added. For sterilized soil, no re‐mobilization of fixed 15NH4+ was observed, while in non‐sterile, biologically active soil, 50 % of the initially fixed 15NH4+ was released up to day 35. Re‐mobilization of 15NH4+ from the pool of fixed NH4+ started after complete nitrification of all extractable NH4+. Our results indicate that in most cases, experimental error from apparent ANI caused by displacement of fixed NH4+ in clay is unlikely. In addition to the low percentage of only 1.3 % of applied 15N, present in the pool of fixed NH4+ after 35 days, there were no indications for a real exchange (displacement) of fixed NH4+ by 15N.  相似文献   

20.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号