首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
Four varieties of white clover (small-leaved cv. Aberystwyth S184. medium-leaved cv. Grasslands Huia and large-leaved cvs Linda and Olwen) were sown at 3 kg ha-1 together with 10 kg ha-1 perennial ryegrass cv. Talbot. Herbage productivity was measured for three harvest years, 1979-81, over four annual rates of fertilizer N (0,120,240 and 360 kg ha-1) and two closeness of cutting treatments (80 and 40 mm from ground level). A simulated grazing regime of six cuts per year at 3- to 6-week intervals was used.
Production of total herbage DM was increased by increasing N rate; mean annual DM production ranged from 783 1 ha-1 with no N to 11701 ha-1 at 360 kg ha-1 N. Mean herbage response to N (kg DM per kg N applied) was 73,90 and 108 for the three successive N increments relative to no N. Mean white clover DM production was reduced from 4 14t ha-1 with no N to 051 t ha-1 at 360 kg ha-1 N.
The large-leaved clover varieties were more productive than the small- or medium-leaved varieties at all N rates. Close cutting increased total herbage and white clover by a mean annual 16% and 31%. respectively. White clover varieties did not interact with either N rate or closeness of cutting.
It is concluded that repetitive N application over the growing season is incompatible with white clover persistence and production, even with large-leaved clover varieties or with close cutting, two factors which improved clover performance in the experimental swards.  相似文献   

2.
A field experiment with mixed swards of perennial ryegrass and while clover carded out in 1982–83 using small cut plots is described. With perennial ryegrass, lime slightly decreased annual dry matter (DM) production in 1982 (the sowing year) but increased it in 1983 (the first harvest year) by about 1 t ha-1. Applications of N and P produced small increases in DM in 1982 and greater increases in 1983. In the latter season annual DM production varied from an average of 3·5 to about 10 t ha-1 with 0 or 480 kg N ha-1 applied in three equal-sized dressings throughout the growing season. Application of 40 kg P ha-1 in 1982 increased DM production by about 2·5 t ha-1 in 1983 but higher rates had little effect. Fifteen mg extractable P kg-1 soil seemed sufficient to support levels of production normally expected from ryegrass pastures in upland Scotland, Applications of K did not affect DM production. N increased tiller weight and sward height of ryegrass; lime and P tended to increase tiller weight but this effect was not statistically significant. Leaf appearance and tiller number were not affected by treatments.
The white clover content of the pasture was decreased 10-fold by application of N and increased by lime and P (1·45 and 1·46-fold. respectively). The DM response to P was most apparent in limed soil and was also affected by the siting of the plots in the experimental area. Effects of lime and P on growth of white clover were to increase the number of stolon growing points and root nodule numbers per unit area.
The results emphasize the importance of lime and P fertilizer for establishment and growth of pasture in this soil and the differences between white clover and ryegrass in their responses to these.  相似文献   

3.
A series of preliminary trials is described to assess the potential and some of the cultural requirements of new cultivars of forage peas grown as pure stands in the west of Scotland. Optimum sowing date was late March for harvesting 15 weeks later to leave sufficient of the growing season for a catch crop or the establishment of a grass sward. Yield of dry matter (DM) at harvest was approximately 6 t ha-1 but DM concentration varied greatly with season. The digestibility of the organic matter was of the order of 0·700 and the crude protein concentration in the DM 170 g kg-1. DM yield increased with increasing seed rate up to 200 kg ha-1 the maximum rate tested.  相似文献   

4.
Four management systems involving different dates for first harvest (simulated grazing, early silage, late silage and hay) and two fertilizer N rates in spring (0 and 80 kg ha-1) were imposed on a perennial ryegrass cv. Talbot/white clover cv. Blanca sward during 1981-82. In each year, annual total herbage DM was increased by spring application of N but white clover production and content in the total herbage were reduced; however, white clover, which was depressed in the harvests immediately after N application, recovered during the season to amounts and contents in the total herbage similar to those given no spring N.
Annual total herbage DM production increased as the date of primary harvest was delayed (935 to 1197 t ha-1 over two years) but mean organic matter digestibility values for the same period decreased (0-769 to 0700). First-harvest production made up substantial proportions of the annual production in the conservation systems. White clover, as shown by its production and the amount of stolon present, was tolerant of conservation systems, especially with no applied N.
It is concluded that grass/white clover swards are suitable for management systems which involve cutting for conservation. The use of strategic spring N seems a viable option, but more knowledge of rates would be valuable since this experiment only compared 80 kg ha-1 with no applied N.  相似文献   

5.
Over a 24-week period, three groups of dairy cows were continuously stocked at 8, 10 or 12 cows ha-1 between morning and afternoon milkings, and overnight were housed and offered grass silage ad libitum. Due to a prolonged drought, sward heights only averaged 4·1 cm.
The increase in daytime stocking rate led to a decline in herbage intake, and increases in silage intake. At the highest stocking rate (12 cows ha-1), the silage intake failed to compensate for the reduced herbage intake. Consequently the total dry matter and estimated metabolizable energy intakes were lower than for the 8 and 10 cows ha-1 treatments. Milk yields and milk composition were not significantly affected by treatment but the 12 cows ha-1 stocking rate gave the lowest milk and milk solids yields.
The utilized metabolizable energy (UME) on the grazed swards was greatest for the 10 cows ha-1 treatment. The sward cut to provide the silage had a UME level (GJ ha-1) 32% greater on average than the grazed swards during the same growth period. The total areas utilized for grazing and silage production for 8, 10 and 12 cows ha-1 were 0·240, 0·224 and 0·215 ha respectively. Fat and protein yields per unit area were greatest for the 10 cows ha-1 group.  相似文献   

6.
Over three grazing seasons (1984-1986) a sward of perennial ryegrass, cv. Talbot, which received a total of 336 kg N ha-1 each season, was cut or grazed with ewes at 3- or 4-week intervals on a rotational basis.
Sward productivity was higher under cutting than under grazing irrespective of the interval between defoliations. Under cutting, mean herbage organic matter (OM) yields over both intervals were 8·66, 9·62 and 8·17 t ha-1 in 1984, 1985 and 1986 respectively while under grazing the corresponding yields were 7·65, 8·63 and 7·50 t ha-1. The mean annual yield of herbage defoliated at 3-week intervals was 7·50, 8·64 and 7 ·20 t OM ha-1 compared with 8·80, 9·60 and 8·46 t OM ha-1 for swards defoliated at 4-week intervals in the three years respectively.
The nitrogen (N) content of both the available and the residual herbage was consistently higher under grazing than under cutting. Available herbage contained 31·3 and 27·7 g N kg OM-1 and residual herbage 26·1 and 22·7 g N kg OM-1 under grazing and cutting respectively.
The mean yield of N under cutting was 284 kg ha-1 compared with 304 kg ha-1 under grazing. Defoliation interval had no effect on N yield, the overall mean yield being 294 kg ha-1 under both 3- and 4-week defoliation intervals. The effect of the treatments on tiller population was slight and inconclusive.
The process of grazing reduced yield probably as a result of damage to the sward through trampling; the positive effect of excretal N on yield was minimal on account of the short grazing periods.  相似文献   

7.
The herbage intake and performance of set-stocked suckler cows and calves   总被引:1,自引:0,他引:1  
Groups of eight Hereford × Friesian cows and their South Devon cross calves were set stocked over a 24-week grazing season at 3·23 (low), 3·21 (medium) or 4·24 (high) cows ha-1 together with their calves. For the first 8 weeks only two-thirds of the total area was grazed. Increasing the stocking rate from low to medium reduced daily milk yield and cow and calf liveweight gains by 1·2, 0·24 and 0·29 kg d-1 respectively, and from medium to high by 1·2, 0·24 and 0·23 kg d-1. The main sward factor influencing faecal output and herbage intake was the quantity of organic matter on the pastures but the digestibility of the herbage selected also exerted a significant effect on the intake of cows. Major depressions in the herbage intake of cows occurred once the average sward height fell below 7 cm. Output of calf live weight was 628, 658 and 743 kg ha-1 for the 3 stocking rates from low to high, and for cows 246, 179 and 30 kg ha-1. It was concluded that decisions on pasture management should be taken in relation to the cow rather than the calf on set-stocked swards.  相似文献   

8.
The effect of goat slurry on species composition and herbage production as compared to inorganic fertilizer was studied in a natural grassland dominated by warm and cool season perennial grasses in Macedonia, Greece. Goat slurry was applied in early spring every 1 or 2 years at a rate of 40 t ha-1 being equivalent to about 160 kg N ha-1 and 100 kg, P2O5 ha-1. Inorganic fertilizer was also broadcast in early spring at a rate of 80 kg N ha-1 and 100 kg P2O5 ha-1 every 2 years. Measurements of the basal cover of the dominant species or groups of species and herbage yields were taken for 6 years at the end of the growing period in June, while in the seventh year the experiment was grazed with goats. It was found that goat slurry improved species composition more than the inorganic fertilizer by depressing the less palatable warm season grasses and favouring the subdominant cool season grasses and legumes. Goat slurry significantly increased herbage yields in most of the years. It is suggested that the optimum rate of goat slurry is 40 t ha-1 every 2 years as this encourages plants most preferred by goats.  相似文献   

9.
A comparison was made of stocking rates of 4·7, 5·6 and 6·4 cows ha-1 during the first 7 weeks (period 1) of the grazing season. Each group of British Friesian cows was continuously stocked on a day and a night field. In the subsequent periods 2 and 3 (each lasting 7 weeks) the three groups were maintained at the same stocking rate within periods (4·2 and 31 cows ha-1, respectively). The differential stocking rates were achieved by the addition and removal of cows.
The stocking rates applied in period I had no significant effects on milk yield, milk composition, liveweight change or condition score, in any period. Milk production ha-1 over the three periods totalled 12390,13 978 and 14986 kg, and the estimated utilized metabolizable energy totalled 773, 81·5 and 86·6 GJ ha-1 for low, medium and high stocking rates, respectively.
Increased stocking rate in period I was associated with a decrease in sward height in periods 1 and 2. This led to an increase in herbage metabolizable energy, and crude protein contents, and to an increase in tiller population density. The lowest stocking rate gave greater live individual tiller weights throughout the experiment and a longer interval between defoliation of individual tillers in period 1.
The results indicate that high stocking rates in the spring are not necessarily detrimental to overall summer performance of spring calving dairy cows. However, high stocking rates in the early season ensure a high level of herbage utilization and milk output ha-1 in that period. Although this practice leads to a reduced sward height in mid season, the sward has less rejected area, a higher tiller population density and a higher digestibility than swards stocked at a lower level.  相似文献   

10.
Herbage characteristics were studied over years 4–6 (1988–90) in three perennial ryegrass ( Lolium perenne L.) varieties as grass-only (200 kg N ha-1) and grass/clover ( Trifolium repens L.) swards which received 75kg N ha-1 in 1988 and 0kg N ha-1 in 1989 and 1990 when continuously stocked with sheep. Mean total annual herbage production of Aurora, a very early flowering variety, was 11% more than that of late-flowering Aberystwyth S23 due to 21% higher growth as grass/clover pasture. The grass/clover sward of Meltra, a tetraploid late-flowering variety, out-yielded S23/clover by 17%. Herbage production of grass/clover was 86% of that of grass only in 1988 but only 54% of the grass-only swards averaged for 1989 and 1990.
In vitro organic matter digestibility (OMD) of Meltra was 38g kg-1 OM and 27g kg-1 OM higher than that of S23 and Aurora respectively. OMD of grass/clover was 15g kg-1 OM higher than that of grass only during the post-weaning period. Herbage intake was positively correlated with OMD of herbage.
The herbage attributes were related to lamb performance reported previously. Lamb output was positively correlated with intake of digestible organic matter.
Differences between the three varieties in herbage characteristics were greater as grass/clover than as grass-only swards, reflecting their compatibility with white clover. In this respect Meltra was the best and S23 the poorest variety.  相似文献   

11.
Changes in the crude protein (CP) concentration of white clover and perennial ryegrass herbage from a mixed sward were determined on six sampling dates from May to October in each of 2 years. The swards were grown without fertilizer N in an organic farming system and continuously grazed by dairy cows during the grazing season. The annual mean contents of white clover in the dry matter (DM) of the sward were 272·3 and 307·0 g kg−1 in Years 1 and 2. The mean CP concentrations of the white clover and perennial ryegrass herbage were 251·6 and 151·9 g kg−1 DM in Year 1 and 271·9 and 174·0 g kg−1 DM in Year 2 respectively. The CP concentration of the white clover increased significantly during the grazing season from 220·0 to 284·1 g kg−1 DM in Year 1 and from 269·0 to 315·5 g kg−1 DM in Year 2. In the perennial ryegrass herbage the CP concentration increased from 112·2 to 172·6 g kg−1 DM in Year 1 and from 142·7 to 239·5 g kg−1 DM in Year 2. The rate of increase during the season in the CP concentration of the perennial ryegrass herbage was similar to the rate of increase recorded in the white clover herbage.  相似文献   

12.
The contribution of four classes of sward height to daily herbage growth rates of a heterogeneous sward in eight periods throughout a grazing season was investigated in two continuous cattle-grazing systems differing in intensity (moderate stocking rate: MC; lenient stocking rate: LC). At the beginning and end of periods of 12 to 28 d, the compressed sward height (CSH) was measured in exclusion cages at eighteen fixed points per cage to derive daily growth rates for the four classes of sward height. Stratified calibrations were made to relate sward height to herbage mass for each treatment in each period. Quadratic regressions described the relationship between herbage growth rate and initial CSH for each treatment in each period. For scaling up to the scale of the plot, CSH was measured monthly at 100 points per plot. Daily herbage growth rates declined from more than 100 kg dry matter (DM) ha−1 d−1 on both treatments at the beginning of the grazing season to 20 kg DM ha−1 d−1 or less, especially on treatment LC. This was due to the larger area covered by tall herbage on treatment LC than on treatment MC. On treatment MC, daily herbage growth rate was predominantly derived from short sward areas of up to 12 cm in height while sward areas taller than 12 cm contributed most to daily growth rates on treatment LC in early summer. The method used is considered suitable for estimating daily herbage growth rates of different classes of sward height in extensively managed pastures and can easily be adapted to deal with more heterogeneous swards than used in this study.  相似文献   

13.
An established sward of red clover cv. Hungaropoly sown pure received approx. 30 kg P ha-1 and 200 kg K ha-1 each year for 3 successive years. The P and K were applied either as cattle slurry, inorganic fertilizer or combinations of these. Treatments were applied either in spring or after the first harvest. There were a total of six treatments and these were harvested three times each year. The average yields of total herbage DM over all the treatments in the first, second and third years were 15·2, 14·2 and 14·2 t ha-1 respectively and the various treatments had no significant effect on the overall yields.
Treatments had a significnt effect on red clover DM yields and percentage red clover in one harvest in each of the first 2 years and all three in the third year. Yields of red clover were lower and grass higher in treatments receiving cattle slurry only. On this treatment there was a total yield of 23·2 t ha-1 red clover DM in the 3 years compared with 30·2 t ha-1 on the inorganic fertilizer treatments. However, by applying P and K fertilizer in the spring, followed by cattle slurry after the first harvest, it was possible to maintain a high proportion of red clover in the sward and to produce yields of red clover DM similar to those on the inorganic fertilizer treatments.  相似文献   

14.
Successful integration of rotational grazing into livestock production systems requires estimates of pasture growth rates for feed budgeting of daily animal intake. By matching livestock nutrient demand with forage availability, over-feeding of supplements can be minimized, which reduces feed costs and the need lo manage surplus nutrients, A three-year grazing study was carried out on a Kentucky bluegrass ( Poa pratensis L.)-dominant pasture to estimate the daily quantity of herbage available to cattle in an intensive, rotational grazing system. Herbage production, species composition, and forage quality were determined in each of the six grazing cycles in a year, from April until September. The average length of a grazing cycle was 28·6 d, with 2·7 d for duration of grazing on a paddock. Pre-grazing and post-grazing sward heights, measured with a plate meter, were 14 and 7 cm, and the corresponding herbage masses were 1955 and 775 kg DM ha−1 respectively. Under adequate soil moisture during 1989, herbage available for daily intake was 53 kg ha−1 from April until mid- August, declining to approximately 32 kg ha−1 d−1 by the end of September. Distribution of this herbage was fairly uniform until the end of August. However, a dry summer in 1991 reduced herbage availability to 15 kg ha−1 d−1. Bluegrass and white clover ( Trifolium repens L.) formed 70% of the herbage yield during the period April–June. Later in the season, dead matter and other species increased, reducing the contribution of bluegrass and clover to approximately 60% of total dry matter. While these pastures have the potential to provide significant amounts of forage for 5–6 months in a year, additional on-farm forage reserves are needed during periods of water stress.  相似文献   

15.
Field trials were carried out at five sites in southern Scotland to examine the sulphur status of intensively grown grass under varying Inputs of atmospheric and rainfall sulphur. Sulphur budgets were prepared by comparing amounts of sulphur removed at harvest with sulphur inputs from rainfall, the atmosphere and fertilizers.
No yield responses to added sulphur were obtained, although soil-derived sulphur was essential for the maintenance of optimal sulphur levels in herbage. Where no fertilizer sulphur was added, mineralization of soil organic sulphur supplied approximately 8 to 18 kg S ha-1 annually during the growing season. Maintenance requirements of 5 to 10 kg S ha-1 annually were indicated at the Dumfriesshire and Midlothian sites and 20 kg S ha-1 annually at the Berwickshire sites to prevent a decline in soil sulphur reserves. Total sulphur concentrations of less than 2 g S kg-1 dry matter were observed in herbage at some samplings indicating marginal sulphur sufficiency. Sulphate levels in herbage, expressed as a percentage of total sulphur, also indicated that sulphur supplies barely matched crop requirements.  相似文献   

16.
A preliminary investigation evaluated six grass-suppressing herbicides applied on two occasions in late winter to a predominantly ryegrass ley containing only 15% ground cover of white clover. Substantial increases in clover growth, estimated visually, and flower head numbers per unit area were recorded in the first summer after treatment with 2·8 kg ha-1 carbetamide, 0·8 kg ha-1 propyzamide and 0·6 kg ha-1 paraquat. To achieve these increases, visual estimates suggested that spring growth of grass was reduced by 40–80%. However, grass growth recovered fully by mid-summer on the majority of the treatments.
The following year five of the herbicides were compared in a field experiment. Dry matter (DM) and nitrogen (N) assessments of the grass and legume components were made at three harvests in the first growing season and a single harvest in the second year. Carbetamide, paraquat and, especially, propyzamide increased the proportion of clover in the DM (to 89% in the case of 1·2 kg ha-1 propyzamide); in general, using herbicides to raise clover contents above 20% lead to reductions in spring grass growth of about 70%. However, such reduction was offset by subsequent increased growth so that total annual yields were largely unaffected. The increased legume content resulted in an increased N concentration in both grass and legume components, measured in the second summer. At this time, the greatest increase in total N yield (up to 35%) was recorded from 0·6 kg ha-1 propyzamide. Potential uses to achieve legume dominance by grass-suppression are suggested and the needs for further research are outlined.  相似文献   

17.
A technique for estimating the rate of disappearance of material from samples of dead herbage protected by simple nylon or wire mesh covers is described. Using this technique on a perennial ryegrass sward in southern England during August-November, relative rates of disappearance close to 0·204 g g-1 d-1 (DM) were obtained, but the variability was high. When herbage killed with paraquat was used, the rate of disappearance was higher and the variability lower. There were only small differences in the temperatures recorded in a normal sward and within samples of dead herbage under mesh covers.  相似文献   

18.
Four legumes—white clover cv. Blanca, red clover cvs Violetta (diploid) and Hungaropoly (tetraploid) and lucerne cv. Europe—were established as pure-sown swards and with each of five companion grasses: timothy cv. Timo, meadow fescue cv. Bundy, sweet brome cv. Deborah and perennial ryegrass cvs Talbot (diploid) and Barlatra (tetraploid), both ryegrasses being of 'intermediate' heading date. Two 'silage' crops and an 'aftermath grazing' crop were harvested in each of three successive years.
In the first harvest year, total herbage DM production of red clover ranged from 15·03 to 17·01 t ha-1. White clover and lucerne swards produced considerably less at 7·12 to 11·01 t ha-1. In the second harvest year, lucerne swards were the highest producing at 15·54 to 17·14 t ha-1, while DM production from red clover and white clover swards ranged from 6·75 to 11·87 t ha-1. Lucerne swards maintained their production superiority in the third year at 16·48 to 17·87 t ha-1, while production from white clover swards ranged from 6·41 to 10·23 t ha-1. However, red clover swards declined to 3·30 to 5·81 t ha -1; this above-average decline was mainly caused by the onset of red clover necrotic mosaic virus which affected all red clover plots uniformly in the second harvest year, and by winter conditions before the third harvest year. Total herbage DOM and CP yields of the swards were influenced in a similar manner to DM production.  相似文献   

19.
The change in structure of continuously grazed versus infrequently cut swards of perennial ryegrass ( Lolium perenne L), cv. S23, was investigated during their first full harvest year. Measurements were made from early May until late September. The intensity of stocking by sheep in the grazed sward was adjusted in an attempt to maintain a high level of radiation interception and the cut sward was harvested at approximately monthly intervals.
The herbage mass, lamina area index and radiation interception of the cut sward varied in a cyclic pattern between harvests but in the grazed sward these parameters showed considerably less variation, although they all increased early in the season and then declined later. The proportion of dead material above ground increased throughout the season in both sward types but was more marked in the grazed sward.
There were major differences between the grazed and cut swards in the number of tillers per unit ground area; the difference became more marked throughout the season and by September the tiller densities in the grazed and cut swards were 3·204 m-2 and 6·203 m-2 respectively. Divergence in tiller density was associated with differences in specific stem weight and leaf area per tiller.
Rates of appearance and death of leaves on tillers in the grazed sward were determined. During May, leaf appearance exceeded leaf death but this was reversed in June. During the rest of the season as a new leaf appeared on a tiller so the oldest leaf died.  相似文献   

20.
Two experiments were conducted to estimate the influence of initial cutting dates in March and April and of cutting frequencies on Guinea grass, elephant grass and star grass productivity. Increasing delay in date of first cut in the season resulted in a progressive increase in dry-matter yield. 72–81% of the tiller population at any cut were vegetative and this helped to maintain good aftermath yield for each date of first cut. Early April cuts gave the highest dry-matter yield and early March the least.
Harvesting frequencies affected the sward productivity such that the annual dry matter yield increased with increasing harvesting interval from 6800 kg ha-1 for a 3-week interval to 13,000 kg ha-1 for a 10-week interval. The proportion of green leaf in the dry matter dropped from 57·7% at 3-week intervals to 32·0% at 10-week intervals. Seasonal effects showed that potential yield was reduced by a short interval between harvests early in the season but not late in the season. Species differences in quality and in the harvesting interval that gave the maximum yields were noted. These results are discussed in relation to management of the sward throughout the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号