首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
【目的】未来大气CO_2浓度显著升高将引起降雨格局的变化,必将对荒漠生态系统产生严重影响。研究CO_2浓度及降水变化对荒漠优势植物光合特性及生长的影响有助于预测荒漠生态系统对全球气候变化的响应。【方法】以荒漠优势植物红砂2年生苗木为试材,采用开顶式CO_2控制气室模拟CO_2浓度(350和700μmol·mol~(-1))变化,研究降水变化减少30%(-30%)、自然降水0、增加30%(+30%)及其与CO_2的协同作用对红砂光合速率、蒸腾速率等光合生理参数以及株高、生物量和根茎比等生长特性的影响。【结果】1)CO_2浓度倍增可显著提高红砂的光合速率,降低蒸腾速率和气孔导度(P0.05),降水增加30%对高浓度CO_2下红砂叶片的光合速率有显著促进作用,对蒸腾速率和气孔导度的降低有一定补偿效应。2)长期高浓度CO_2处理使红砂存在光合适应现象,光合能力下调。3)CO_2浓度倍增和降雨量增加可显著增加红砂的株高、地上生物量和总生物量,且CO_2浓度增加可以减缓因降雨量减少而引起的红砂生长量减小。4)降雨减少,红砂的根生物量增长,导致根茎比增加;CO_2浓度升高则显著促进地上部分生长,导致根茎比减小。【结论】未来CO_2浓度升高条件下,降雨量增加地区红砂因充足的碳源和水分而得以恢复;降雨减少地区,CO_2浓度升高对降雨减少有一定的补偿作用,红砂以较高的根茎比来维持其在荒漠生态系统中地位。  相似文献   

2.
指出了高原湿地作为一种特殊生态系统在维持生态平衡中有着重要作用,同时具有多种生态服务功能。高原湿地由于地理隔离和地形封闭的特性,其在发挥着重要作用的同时也成为更为敏感和脆弱的地带。全球气候变化是导致高寒地区湿地生态系统退化的重要原因之一,也是引起环境变劣、生物多样性下降的重要因素。探讨了全球气候变暖,大气CO_2浓度升高以及环境胁迫3个因素对高原湿地植物的影响,以期为全球气候变化对高原湿地植物的影响研究提供参考。  相似文献   

3.
目前,以CO2浓度上升为特征的气候变化已是全球范围内的重要环境问题。CO2浓度上升对整个生态系统有直接影响,尤其是对林木的生理生长发育、光合作用、呼吸作用等方面影响显著。该文针对大气CO2浓度升高对林木的光合作用和呼吸作用的主要影响及部分生理生态结构变化的最新研究进行综述。希望可以丰富有关全球生态系统可持续发展的科学理论,特别是对全球气候变化和温室效应日益显著的背景下实现森林树木的研究保护提供参考。  相似文献   

4.
自工业革命以来, 人类活动尤其是发达国家在工业化过程中消耗大量资源、能源, 造成大气中温室气体浓度增加, 引起全球范围内的气候变化, 给人类的生存和发展带来严峻挑战, 也对植物的生理过程产生了影响。关于CO2浓度升高及其与气候因子和环境胁迫因子对植物生理过程的影响已引起各国科学家广泛关注。文中就近年来气候变化对植物生理过程的影响国内外研究进行归类和分析, 介绍了植物对CO2、温度、水分等因素变化的响应过程研究进展, 并提出对进一步研究的展望。  相似文献   

5.
本文系统地综述了国际上开展与全球气候变化有关的大气CO2浓度增加对植物和生态系统影响研究的实验技术方法和细胞、叶片和个体水平对CO2反应的最新研究成果,人工气候模拟装置和测定技术;大气CO2浓度增加对细胞、叶片及个体植物生长的影响;主要的研究结论。  相似文献   

6.
指出了随着大气中的CO2浓度不断升高,对陆地生态系统造成一定的影响,从植物的生长、植物N素吸收、植物及代谢酶等方面详细地探讨了CO2浓度对植物的影响。  相似文献   

7.
基于CO2浓度升高、温度、干旱三者之间协同作用对植物生理生态的影响,总结了近年来国内外关于全球气候变化对植物生理生态过程(光合作用、呼吸作用)影响的研究内容,据此指出未来全球变化条件下植物生理生态的研究应在分子水平上进一步深入。  相似文献   

8.
《林业科学》2021,57(4)
【目的】分析大气CO_2浓度升高对宁夏枸杞根区土壤微生物功能多样性及碳源利用特征的影响,为宁夏枸杞适应气候变化进行可持续管理提供理论依据。【方法】以宁夏枸杞扦插苗为材料,采用开顶气室设置自然环境大气CO_2浓度[CK,(400±20)μmol·mol~(-1)]、0.5倍增[TR1,(600±20)μmol·mol~(-1)]和1倍增[TR2,(800±20)μmol·mol~(-1)]3个处理宁夏枸杞苗木,分别于处理后的30、60、90、120天采集根区土样,采用BIO-ECO技术分析土壤微生物群落功能多样性及碳源利用特征。【结果】1) CO_2浓度升高均显著提高宁夏枸杞根区土壤微生物碳源代谢活性(AWCD),0.5倍增和1倍增大气CO_2浓度AWCD分别比对照提高22.56%、36.45%。2)随着CO_2浓度升高,土壤微生物Shannon指数、McIntosh指数显著增加,而Simpson指数在处理前期增加,但处理中后期无显著变化。3)宁夏枸杞根区土壤微生物群落利用并转化的主要碳源为氨基酸类、酯类和胺类碳源; CO_2浓度升高处理下,土壤微生物利用率较大的碳源主要为酯类和胺类,而糖类和酸类利用率较低。其中1倍增大气CO_2浓度下土壤微生物群落对L-精氨酸、L-天冬酰胺酸、吐温-40、苯乙基胺和4-羟基苯甲酸等的利用代谢能力均显著高于对照,但对γ-羟基丁酸的利用代谢能力显著低于对照。4)大气CO_2浓度升高显著影响宁夏枸杞根区土壤微生物群落碳源利用率,不同时期将土壤微生物群落划分而起分异作用的主要碳源是糖类和胺类。【结论】大气CO_2浓度升高能使微生物群落的活性及碳源利用率明显增加,并且均提高宁夏枸杞根区土壤微生物群落的物种丰富度、物种优势度及群落均匀度,1倍增大气CO_2浓度处理土壤微生物群落代谢活性和多样性最高,六大类碳源中,氨基酸类、酯类和胺类碳源是宁夏枸杞根区土壤微生物群落利用并转化的主要碳源。处理60天时(7月份)土壤微生物群落碳源利用率最强。因此,大气CO_2浓度升高是造成宁夏枸杞根区土壤微生物群落代谢多样性和碳源利用差异的主要原因。  相似文献   

9.
森林、林业活动与温室气体的减排增汇   总被引:8,自引:0,他引:8  
大气中CO_2等温室气体浓度上升引起的全球变暖,威胁着人类生存和社会经济的可持续发展。在减少温室气体排放、稳定大气CO_2浓度的措施中,森林和林业活动扮演着重要的角色。森林可吸收并固定大气CO_2,是大气CO_2的吸收汇和贮存库;而毁林是大气CO_2的重要排放源。通过适当的林业活动可增强碳吸收汇、保护现有的碳贮存,通过替代措施可减少化石燃料引起的温室气体排放。因此,林业活动在未来减缓大气温室气体上升方面将发挥重要作用。阐明了全球和中国森林生态系统在减缓大气CO_2浓度上升中的作用以及与土地利用变化和林业有关的减排增汇措施和潜力,以期对我国制定CO_2减排增汇政策提供参考依据。  相似文献   

10.
大气CO2浓度的增加,不仅加剧了全球的温室效应,也改变了全球生态系统中碳的平衡。CO2浓度和温度的升高及交互作用对植物光合作用的影响已经成为目前人们研究的重点。高浓度CO2对植物光合作用的影响表现为短期和长期效应两个方面,短时期的供给高浓度CO2会促进植物的光合作用,而植物对长时间的高浓度CO2处理所作出的响应却表现有所不同,多数植物表现出光合适应现象,而有些木本植物则不表现出这种现象。同样地,温度的升高以及高CO2浓度和高温的交互作用对植物光合作用的影响都存在一定的复杂性。因此,植物光合作用对大气[CO2]和温度升高的响应及适应机制的研究亟待深入。  相似文献   

11.

In Scandinavia, moose (Alces alces L.) sometimes cause severe browsing damage to economically-important pine. Moose-vehicle accidents have spurred construction of fences along roads, and these may interfere with moose migration between summer and winter ranges, or the road alone may be a barrier. If this happens and moose build up along roads, landowners may suffer economically. Therefore, this study investigated whether roads, fences or other factors influence the use of young pine stands by moose. Eighty stands along roads in northern Sweden were evaluated in which individually-browsed branches were counted on 9972 pines. Moose browsing was not significantly related to birch (Betula pendula Roth, B. pubescens Ehrh.) density, nor did it differ between pines (Pinus contorta Douglas or P. sylvestris L.). However, increased pine density, site productivity and proximity to a highway were associated with increased browsing. Further large-scale studies are needed to understand moose habitat selection and the effects of roads.  相似文献   

12.

The root systems of 2-yr-old Picea glauca, Picea mariana and Pinus banksiana seedlings were submitted to various frost temperatures during an artificial frost to induce different levels of root damage. Frost-damaged and control seedlings were placed in a greenhouse under high and low soil moisture regimes. Seedling growth and physiology were evaluated periodically. Seedling survival was reduced when root damage reached levels of 60-80%. Root systems of all three species showed partial to total recovery by the end of the experiment. In general, root freezing damage caused reductions in seedling growth, with these reductions becoming less significant over time. Root damage had little to no effect on black spruce and jack pine seedling physiology, while white spruce CO 2 uptake decreased with increasing root damage. Shoot nitrogen content of all three species decreased slightly with increasing root damage.  相似文献   

13.

This study investigated the stand structure in pine, spruce and deciduous forests in the border district of Finland and Russia. A total of 46 mature forest stands was selected as pairs, the members of each pair being as similar as possible with respect to their forest site type, age, moisture and topography. The stands were then compared between the two countries by means of basal areas and number of stems. The proportions of dominating tree species were 2-12% lower, and correspondingly the proportions of secondary tree species higher, in Russian forests. The density of the forest stock was also higher in each forest type in Russia. The forests in the two countries differed most radically in terms of the abundance of dead trees. The amount was two to four times higher in Russian deciduous and spruce forests, and in pine forests the difference was 10-fold. The stand structures indicated that Russian coniferous stands, in particular, were more heterogeneous than intensively managed pine and spruce stands in Finland.  相似文献   

14.

The root collar diameter and the height:diameter ratio are of particular importance in container-grown seedlings where a high density in the containers may produce spindly seedlings. Temperature regimes and light quality are known to affect plant growth. The aim of this study was to identify responses in Picea abies (L.) Karst. seedlings grown with light providing different red:far-red ratios and under temperature regimes with alternating day (DT) and night temperature (NT) from negative (DT < NT) to positive (DT > NT) difference (DIF) between DT and NT. Experiments were conducted in controlled environment chambers and in a daylight phytotron. Only limited thermoperiodic responses appeared in P . abies seedlings with respect to seedling height and dry weight accumulation. The formation of terminal buds, however, was clearly delayed in seedlings grown at negative DIF. The results indicate a requirement for day extension light that is high in far-red, to prevent terminal bud formation under natural short-day conditions. An extended study should be conducted to clarify the minimum level of light intensity and the optimal light quality needed to prevent terminal bud formation under natural short-day conditions.  相似文献   

15.
本文分析了CAD在设计中引起的正面和负面影响,并进行了系统的阐述,从而使设计者在应用中能够保持客观的态度。  相似文献   

16.

The effects of soil scarification (mounding), slash removal and clear-cut age on the natural regeneration in clear-cuts was evaluated using data from four sites in southern Sweden. The treatments were carried out during a good seed and establishment year for birch ( Betula pubescens Ehrh. and B. pendula Roth). Scarification had the strongest positive effect on the density of naturally regenerated seedlings, especially in birch, but also in pine ( Pinus sylvestris L.) and spruce [ Picea abies (L.) Karst]. Slash removal had a positive effect on birch density. No statistically significant effect of clear-cut age was found. In addition, no statistically significant interactions between clear-cut age and scarification or slash removal were found. The ingrowth of field vegetation was the fastest in areas that were not scarified, less rapid in areas scarified on old clear-cuts, and the slowest after scarification in fresh clear-cuts. In conclusion, it may be possible to control the density of birch during a good establishment year for birch. If birch is desired, the best combination of treatments is to remove the slash and scarify; otherwise, these treatments should be avoided.  相似文献   

17.
18.

Based on an enquiry, risk perception among non-industrial private forest owners is described in relation to climate change and forestry hazards. Of the respondents, 11% took action to remedy the effects of climate change. Out of a given set, hazards were ranked according to each respondent's experience of recent substantial financial loss to the estate and in relation to his or her willingness to make investments aimed at risk reduction. For each hazard, the respondent assessed the risk in four classes ranging from very high to negligible risk. Six hazards were considered most problematic in all three aspects: browsing damage, falling timber prices, damage by wind, spruce bark beetle, root rot and pine weevil. A majority of the respondents claimed to take action to reduce the risk associated with at least one hazard, while 35% did not know whether they did. Excluding climate change, the need for decision support was the largest in relation to damage by wind owing to a combination of perceived high risk and a high level of ignorance in relation to whether risk-reducing measures were taken.  相似文献   

19.
In situ produced plant residues contain a mixture of different plant components of varying quality. To assess synergistic or antagonistic interactions occurring during the decomposition and mineralization of such mixtures, individual plant parts (stems, leaves, leaf litter and roots) or the mixture of stems, leaves and leaf litter of the agroforestry species pigeonpea (Cajanus cajan) or of crop residues of peanut (Arachis hypogaea) or of the weed hairy indigo (Indigofera hirsuta) were incubated in pots for 19 weeks. Periodically, remaining plant residues were sieved out (>2 mm), weighed and N content as well as soil mineral N determined. Above- and below-ground residues of peanut decomposed fastest and showed the largest N release in agreement with their high N concentration and low-acid detergent fibre (ADF) : N ratio. Hairy indigo was hypothesized to be of lower quality than pigeonpea because of its high-polyphenol content. However, it decomposed faster than pigeonpea, largely because of the higher N and lower lignin concentration of its components. Ranking of individual plant components for N mineralization resulted in the following pattern, leaves > leaf litter > roots > stems. In mixtures of the different plant components a similar species order in decomposition was obtained, e.g. peanut > hairy indigo > pigeonpea. The amount of N released from the mixture was dominated by stem material that comprised 46–61% of the mixture. The interactions in mixtures were relatively small for peanut (generally high-quality components) as well as for pigeonpea (low proportion of high-quality components, i.e. N rich leaf material). However, a positive interaction occurred during later stages of N mineralization in the mixture of hairy indigo as it had a significant proportion of N rich components and absence of highly reactive polyphenols. Thus, for plants with low to intermediate chemical quality attributes, manipulating plant composition (e.g. by varying harvest age, affecting stem and leaf proportions) will be important to obtain significant interactions during decomposition when its components are mixed.  相似文献   

20.
The use of organic waste materials such as milk sewage as an organic fertilizer could have the dual advantages of organic-waste disposal and reduced dependence on inorganic fertilizers. The effects of fertilization with (1) conventional mineral fertilization, (2) milk sewage sludge at 40 kg N ha−1 target rate and (3) no fertilization on pasture production and tree growth were examined in an experiment consisting of two pasture mixtures under a one-year-old Pinus radiata plantation with a density of 2500 trees ha−1. The two pasture mixtures were: (1) Dactylis glomerata L. var. saborto (25 kg ha−1) + Trifolium repens L. group Ladino (4 kg ha−1) + Trifolium pratense L. var. Marino (1 kg ha−1); (2) Lolium perenne L. var. Tove (25 kg ha−1) + Trifolium repens L. group Ladino (4 kg ha−1) + Trifolium pratense L. var. Marino (1 kg ha−1). The experiment began in the spring of 1995 using a randomized block design with three replicates in Castro Riberas de Lea (Lugo, Galicia, north-western Spain). Plot size was 12 × 8 m2, with a 1 m buffer strip between plots. Two-year data showed that fertilization with either material had a positive effect on pasture production, with no significant difference between the two fertilization treatments. Tree growth in the milk sewage sludge plot was significantly higher than in the control plots. Inorganic fertilization increased pasture production, but affected tree growth negatively. The results show that milk sewage sludge could be used as a fertilizer in silvo-pastoral systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号