首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expected reduction in the use of fertilizer nitrogen (N) on grassland in the Netherlands has led to renewed interest in white clover. Therefore, the performance of a newly sown perennial ryegrass/white clover sward on clay soil was assessed during 4 consecutive years. The experiment consisted of all combinations of two defoliation systems, i.e. one or two silage cuts per year (S1, S2), spring N application rate, i.e. 0 or 50 kg ha−1 year−1 (N0, N50), and the management system, i.e. rotational grazing and cutting, or cutting only (RGC, CO). The overall mean white clover cover was 30%. All treatments affected white clover cover, which was 8% higher with S2 than with S1, 6% higher with N0 than with N50 and 12% higher with CO than with RGC. The overall mean annual dry-matter (DM) yield (13·1 t ha−1 year−1) was significantly affected only by the management system: in two relatively wetter years, the annual DM yield was 1·19 t ha−1 higher with RGC than with CO, whereas there was no difference in two relatively drier years. Nitrogen application increased the DM yield in the first cut by 7·0 kg kg−1 N applied, but had no significant effect on the annual DM yield. Herbage quality was not affected by the experimental treatments. The average in vitro organic matter digestibility was 0.801, and the average crude protein content was 193 g kg−1 DM. With the expected reduction in the use of fertilizer N, perennial ryegrass/white clover swards should be seriously considered as an alternative option to perennial ryegrass swards on these clay soils.  相似文献   

2.
The effect of the initial N-supplying capacity of soils (SoilN, 90–230 kg N ha–1 year–1) was tested on the dry-matter and N yields of pure or mixed white clover and perennial ryegrass swards, managed under simulated grazing over a 5-year period. The cumulated N harvested in the mixed swards was similar, both for white clover and perennial ryegrass, but the proportion of white clover showed oscillations over a 2-year period. In the first year, the SoilN effect was similar to that of fertilizer N. During the course of the experiment, the effect was always positive on the pure perennial ryegrass sward, alternately negative and nil for the white clover in the mixed sward and alternately positive and nil for the perennial ryegrass in the mixed sward; the period of these oscillations was 2 years. From the third regrowth period after sowing, the ratio between the actual N concentration and the concentration non-limiting to growth for the perennial ryegrass in the mixed sward, increased above that of the pure perennial ryegrass sward. It was in turn greater in the soils that were initially poor and then greater in those that were initially rich in soil N. The periodic oscillation of the initial SoilN effects implies that the initial SoilN gradient was alternately compensated and restored. It was concluded that N fluxes are partly responsible for the temporal oscillations in the proportion of white clover in mixed swards.  相似文献   

3.
Three replicate paddocks, each of 0·235 ha, containing adjacent monocultures of perennial ryegrass or white clover [50:50 by ground area, 6 cm sward surface height (SSH) at start of experiment] were continuously stocked with three yearling and four mature non-lactating, non-pregnant Scottish halfbred ewes for 12 weeks. Herbage intake, grazing behaviour and dietary selection were measured on seven occasions. Clover SSH declined rapidly over the first 5 weeks then stabilized at 1·2–1·6 cm, whereas perennial ryegrass SSH rose slightly initially, then declined gradually. Animals initially included proportionately c . 0·6 white clover in their diet but, by the end of the experiment, this had fallen to 0·3. Total daily herbage intake declined over the 12 weeks from 1·8 kg dry matter (DM) day–1 at the start to 1·0 kg DM day–1. Total grazing time increased from 561 min day–1 to 649 min day–1 at the end of the experiment. The results suggest that, despite overall herbage depletion and a greater depletion of white clover than perennial ryegrass as a result of the initial partial preference for white clover, the animals traded-off a reduced total intake and an increased grazing time in an attempt to maintain their initial preferred dietary composition.  相似文献   

4.
Changes in the crude protein (CP) concentration of white clover and perennial ryegrass herbage from a mixed sward were determined on six sampling dates from May to October in each of 2 years. The swards were grown without fertilizer N in an organic farming system and continuously grazed by dairy cows during the grazing season. The annual mean contents of white clover in the dry matter (DM) of the sward were 272·3 and 307·0 g kg−1 in Years 1 and 2. The mean CP concentrations of the white clover and perennial ryegrass herbage were 251·6 and 151·9 g kg−1 DM in Year 1 and 271·9 and 174·0 g kg−1 DM in Year 2 respectively. The CP concentration of the white clover increased significantly during the grazing season from 220·0 to 284·1 g kg−1 DM in Year 1 and from 269·0 to 315·5 g kg−1 DM in Year 2. In the perennial ryegrass herbage the CP concentration increased from 112·2 to 172·6 g kg−1 DM in Year 1 and from 142·7 to 239·5 g kg−1 DM in Year 2. The rate of increase during the season in the CP concentration of the perennial ryegrass herbage was similar to the rate of increase recorded in the white clover herbage.  相似文献   

5.
Mixtures of perennial ryegrass ( Lolium perenne L.) and white clover ( Trifolium repens L.) sown in alternate rows or in a thoroughly mixed matrix were grazed by sheep, either continuously or during short grazing tests, and were used to investigate the influence of the vertical and horizontal components of the sward structure on defoliation by sheep.
In an experiment under continuous grazing, the defoliation intensity was greater for white clover compared with perennial ryegrass leaves (0·80 and 0·58 respectively). In spring, perennial ryegrass leaves were more defoliated than white clover leaves, whereas the reverse was observed in summer. The ratio of the proportion of white clover to perennial ryegrass leaves grazed was negatively correlated with the difference between the surface height of the perennial ryegrass and white clover rows in spring. In both spring and summer, white clover leaves of the same extended leaf length had a higher proportion of them grazed than perennial ryegrass leaves.
In another experiment, during short grazing tests with perennial ryegrass–white clover swards that were grazed at the same sward surface height and at the same white clover content as in the previous experiment, there were no significant differences in the proportion of white clover and perennial ryegrass leaves grazed between strips of the two species and thoroughly mixed structures. The proportion of white clover leaves grazed was higher than that of perennial ryegrass leaves.
These results show that the differential defoliation by sheep of perennial ryegrass and white clover leaves varies according to their vertical distribution in the mixed canopy, but is little affected by their horizontal distribution. Even small differences in sward surface height between mixed perennial ryegrass and white clover can affect diet selection by sheep to a rather large extent.  相似文献   

6.
The implications for UK upland sheep systems of reducing nitrogen fertilizer application to perennial ryegrass/white clover swards were studied over 3 years. Sward height (3·5–5·5 cm) was controlled for ewes with lambs until weaning using surplus pasture areas for silage; thereafter, ewes and weaned lambs were grazed on separate areas, and sward height was controlled by adjusting the size of the areas grazed and using surplus pasture areas for silage if necessary. Combinations from three stocking rates [10, 6 and 4 ewes ha−1 on the total area (grazed and ensiled)] and four nitrogen fertilizer levels (150, 100, 50 and 0 kg ha−1) provided six treatments that were replicated three times. Average white clover content was negatively correlated with level of nitrogen fertilizer. The proportion of white clover in the swards increased over the duration of the experiment. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain on all treatments. All treatments provided adequate winter fodder as silage. It is concluded that the application of nitrogen fertilizer can be reduced or removed from upland sheep pastures without compromising individual animal performance provided that white clover content and sward height are maintained. Resting pastures from grazing by changing ensiled and grazed areas from year to year sustained white clover content over a 3-year period.  相似文献   

7.
A perennial ryegrass/white clover sward, which had been grazed for over 2 years, was cut at 1-, 2-, 3- or 6-week intervals from 18 April to 28 November 1986. Two rates of fertilizer N application in spring, 0 and 66 kg N ha−1, were compared. Perennial ryegrass growth was studied in three 6-week periods, beginning on 18 April, 18 July and 17 October. Clover growth was studied in the same three periods and described by Fisher and Wilman (1995) Grass and Forage Science , 50 , 162–171.
Applied N increased the number of ryegrass tillers m−2, the rate of leaf extension and the weight of new leaf produced tiller−1 and m−2per week. Increasing the interval between cuts reduced the number of ryegrass tillers m−2 and increased the rate of leaf extension, weight tiller−1and the weight of new leaf produced tiller−1week−1. Increasing the interval between cuts increased the weight of new ryegrass leaf produced m−2 where N had recently been applied, but otherwise had little effect on the weight of new leaf produced m−2. Applying N favoured the grass in competition with the clover in every respect, whereas increasing the interval between cuts only favoured the grass, compared with clover, where N had recently been applied; where N had not been applied, the ratio of ryegrass tillers to clover growing points in the sward was very little affected by the interval between cuts.  相似文献   

8.
Twelve plots were laid down on an existing perennial ryegrass/white clover sward, one plot in each of six replicated blocks receiving 100 kg  N ha−1 (100N) and one plot receiving no N (0N). Biomass, canopy development (stratified cuts and point quadrat records at 2–4-week intervals) and changes in stolon population density were recorded during one 8-week regrowth period (25 July–23 September) to investigate the likely causes of N effects on white clover in mixed swards.
Over the period, N fertilizer resulted in an increase of 74% in perennial ryegrass biomass and a reduction of 24% in white clover biomass. There was also a reduction of 44% in stolon growing point density, mainly due to lower density of younger stolon branches. White clover's contribution to the upper three leaf area index (LAI) units (taken as an estimate of the proportion of photosynthetically active radiation (PAR) intercepted) was, on average, 70% at 0N producing 74% of the sward biomass, compared with 46% contribution to interception and 37% contribution to biomass at 100N.
While there was no evidence of overtopping, it is concluded that N fertilizer application increased the LAI of perennial ryegrass in the upper layers of the canopy thereby reducing the share of available PAR to white clover. This, coupled with a lower radiation use efficiency at high N and lower population density, results in white clover's reduced performance in mixed swards receiving N fertilizer.  相似文献   

9.
An experiment was carried out in 1992 and 1993 to examine the effect of white clover content of perennial ryegrass/white clover swards on the performance of Limousin × Friesian heifers. Swards with low (L), medium (M) and high (H) white clover contents were established and managed by continuous variable stocking. A compressed sward height of 5·5 cm was maintained using a buffer fence to vary plot areas, with herbage surplus to grazing requirements cut, removed and yields measured. The mean white clover proportions for treatments L, M and H were 0·02, 0·19 and 0·18 in 1992 and 0·13, 0·16 and 0·31 in 1993 respectively. White clover contents of the swards reached a maximum in August and September, and differences between treatments diminished. There was no significant difference between treatments in the content of white clover in the swards in autumn 1993.
Liveweight gains of heifers increased asymptotically with increasing white clover content of the sward. Below a white clover herbage mass of 300 kg DM ha–1, there was little effect on liveweight gain, which was 0·70 kg day–1 over the grazing season. Between 400 and 450 kg DM ha–1 white clover, liveweight gains were 0·85–0·90 kg day–1. While clover content of the sward did not significantly affect utilized metabolizable energy output; the mean output over the grazing season in the two years from liveweight gain and herbage yield was 78 GJ ha–1. It is suggested that, using this grazing system, white clover reached an equilibrium with a mean herbage mass of about 400 kg DM ha–1 over the grazing season.  相似文献   

10.
Ninety-six plots (3 × 2 m) of well-established perennial rye grass/white clover pasture were mown to heights of 2·7 (Low) or 3·96 (High) cm (rising plate meter) at 14-, 28-, 84- or 112-d intervals in autumn-winter. A 7-, 14- and 28-d mowing interval was superimposed in spring on each autumn–winter mowing interval treatment with the low and high mowing heights altered to 2·92 and 4·80 cm, respectively.
With the low cutting height, accumulated herbage DM was more than doubled (1806 ± 79 kg DM ha-1) compared to a 'high' (754 ± 49 kg DM ha-1) cutting height in autumn–winter and this was due to increased harvesting efficiency rather than growth as estimated by leaf extension. Although defoliation interval had no effect on DM yield, the grass component increased and clover decreased. The composition effect carried over into spring. On average, 3·5 tillers were produced over winter for each ryegrass tiller present in autumn and tiller densities were higher in spring. Tillers produced over autumn–winter contributed more than 60% of ryegrass growth by early spring.
In early spring (16–30 September), the low cutting height increased herbage DM yield, in mid-spring (1–14 October) it reduced DM yields particularly in combination with short defoliation intervals, while in late spring (14 October to 11 November) cutting height had no effect on DM yields.
Over the entire spring period there was a very marked effect of defoliation interval on DM yields.  相似文献   

11.
Four experiments were established in 1981–84 to investigate the effect of defoliation treatments on white clover varieties when grown with S23 perennial ryegrass. Treatments included a cutting only regime, as used in National List trials, and grazing systems simulating as near as possible those used on farms.
Differential effects of cutting and continuous sheep stocking on white clover varieties, together with significant variety × defoliation interactions, illustrated the importance of the grazing animal in the evaluation of white clover. Differential effects of cattle and sheep grazing were also evident. Cattle grazing was less detrimental to white clover than was sheep grazing, i.e. cattle were not selective, and less stolon was removed. In general, with both cattle and sheep grazing the larger the clover leaf size the greater the loss in stolons, which in turn decreased persistency. The results illustrate how alternating cutting, sheep grazing and cattle grazing managements can be used to maintain optimum clover/grass balance.
Successful clover/grass swards depend on the retention of clover, yet avoiding clover dominance. The difference in N transfer between clover varieties, especially those within the same leaf category, and the extra grass produced without fertilizer N, emphasized the importance of varietal choice. Breeding programmes have been concerned with the selection of larger-leaved, long-petioled varieties for growing in competition with grass in the presence of fertilizer N. However, the present results showed that, under continuous sheep stocking, increase in leaf size does not increase clover yield or persistency.
The results presented emphasize the importance of the grazing animal in the evaluation of white clover varieties and indicate that yield of clover dry matter should not be the major criterion for selection of varieties for farm systems.  相似文献   

12.
A field experiment with mixed swards of perennial ryegrass and while clover carded out in 1982–83 using small cut plots is described. With perennial ryegrass, lime slightly decreased annual dry matter (DM) production in 1982 (the sowing year) but increased it in 1983 (the first harvest year) by about 1 t ha-1. Applications of N and P produced small increases in DM in 1982 and greater increases in 1983. In the latter season annual DM production varied from an average of 3·5 to about 10 t ha-1 with 0 or 480 kg N ha-1 applied in three equal-sized dressings throughout the growing season. Application of 40 kg P ha-1 in 1982 increased DM production by about 2·5 t ha-1 in 1983 but higher rates had little effect. Fifteen mg extractable P kg-1 soil seemed sufficient to support levels of production normally expected from ryegrass pastures in upland Scotland, Applications of K did not affect DM production. N increased tiller weight and sward height of ryegrass; lime and P tended to increase tiller weight but this effect was not statistically significant. Leaf appearance and tiller number were not affected by treatments.
The white clover content of the pasture was decreased 10-fold by application of N and increased by lime and P (1·45 and 1·46-fold. respectively). The DM response to P was most apparent in limed soil and was also affected by the siting of the plots in the experimental area. Effects of lime and P on growth of white clover were to increase the number of stolon growing points and root nodule numbers per unit area.
The results emphasize the importance of lime and P fertilizer for establishment and growth of pasture in this soil and the differences between white clover and ryegrass in their responses to these.  相似文献   

13.
An experiment was carried out to compare the effects of two compressed sward height treatments, each at two fertilizer nitrogen (N) treatments (0 and 50 kg ha−1 in spring), on the date of turnout and liveweight gain of steers grazing a perennial ryegrass/white clover ( Lolium perenne/Trifolium repens ) sward sited on clay loam in south-west England. The sward height treatments were 6 cm all season, and 4 cm in the spring rising to 6 cm in June; these were maintained using continuously variable stocking with Hereford × Friesian steers. Cattle were turned out on average 11·5 days earlier on the 4-cm sward height compared with the 6-cm sward height treatment. Liveweight gain early in the season was lower on the 4-cm swards than on the 6-cm swards. Liveweight gain ha−1 over the whole season was similar for the two sward height treatments. Fertilizer N did not affect turnout date or liveweight gain.  相似文献   

14.
The effects of the imposition and timing of a rest period from continuous sheep stocking, for a conservation cut, on white clover presence in forty perennial ryegrass/white clover associations were studied over two full grazing seasons. Each association consisted of one grass variety along with one white clover variety, the grasses being diploid and tetraploid ryegrasses from each of five maturity groups and the white clovers from each of four leaf size categories. The presence of white clover within each association was assessed at the beginning and end of both seasons by means of a 0–64-m2 quadrat subdivided into 100 squares, each 80 mm × 80 mm, the number of squares in which any part of a white clover plant was visible being recorded. Complementary point quadrat data were also collected. Although continuous sheep stocking did not necessarily have an adverse effect on white clover presence, a July to mid-August rest period increased white clover proportions in the swards (means: unrested, 48–1; April to late May rest, 32.7; July to mid-August rest, 67.3 - s.e.d. 7.59; P < 0.05) the benefit increasing with increasing white clover leaf size. The early rest period (April to late May) reduced white clover presence and the late rest period (July to mid-August) increased white clover presence, these effects being intensified with increasing white clover leaf size (very large-leaved clover: unrested, 20.6; April to late May rest, 8.3; July to mid-August rest, 41.1 and small-leaved clover: unrested, 96.3; April to late May rest, 84.8; July to mid-August rest, 97 - s.e.d. 9.2; P <0001). Tetraploid ryegrass/white clover associations had consistently and significantly more white clover than diploid ryegrass/white clover associations of similar ryegrass maturity group (tetraploid, 53.4; diploid 44.8 - s.e.d. 2.12; P <0.001) and associations with early maturing ryegrass contained more white clover than those with late maturing ryegrasses, the effect of maturity group being greater than that of ploidy. Overall, white clover presence increased with increasing openness of grass growth habit.  相似文献   

15.
The fatty acid (FA) concentration of herbage and lipid metabolism in silage, mainly oxidation and lipolysis, of different species (perennial ryegrass, red clover and white clover) and three cultivars of white and red clover at three cutting dates in the growing season (April, July and October) were studied. FA concentration and composition was strongly affected by species and cutting date. Perennial ryegrass had lower concentrations of C16:1, C18:0, C18:1 and C18:2 than red and white clover. Within red and white clover, the effect of cultivar was small. Oxidation of C18:3 during wilting was different between species and cutting date despite similar wilting conditions. Lipolysis in silage was also influenced by cutting date, species and to some extent by cultivar. Furthermore, in some cuts silages of red and white clover displayed a lower lipolysis than silage of perennial ryegrass. On average, over the three cutting dates proportionately 0·903, 0·864 and 0·857 of the membrane lipids in perennial ryegrass, red clover and white clover were hydrolysed during ensiling. In red clover this could be due to the lipid-protecting properties of polyphenol oxidase (PPO) activity. This was not observed in perennial ryegrass or white clover. Nevertheless, differences in lipolysis in silage between cultivars of red clover were not correlated with PPO activity.  相似文献   

16.
This 6‐year experiment quantified the impacts of management factors on red clover yield, persistence, nutritive value and ensilability, and compared these with perennial ryegrass receiving inorganic N fertilizer. Within a randomized complete block design, field plots were used to evaluate a 2 (cultivar, Merviot and Ruttinova) × 2 (alone and with perennial ryegrass) × 2 (0 and 50 kg fertilizer N ha?1 in mid‐March) × 2 (harvest schedule) combination of the factors relating to red clover, and a 2 (harvest schedule) × 4 (0, 50, 100 and 150 kg N ha?1 for each cut) combination of the factors relating to perennial ryegrass. The early and late harvest schedules both involved four cuts per year, but commenced a fortnight apart. Red clover treatments averaged 14 906 kg dry matter (DM) ha?1 per year, whereas perennial ryegrass receiving 600 kg inorganic N fertilizer per year averaged 14 803 kg DM ha?1 per year. There was no yield decline evident across years despite a decline in the proportion of red clover. The early harvest schedule and sowing ryegrass with red clover increased the herbage yield and digestibility. March application of fertilizer N to red clover treatments reduced the annual yield. Early harvest schedule increased and both fertilizer N and sowing with ryegrass decreased the proportion of red clover. Sowing with ryegrass improved the indices of ensilability, but reduced the crude protein content. Both red clover cultivars had similar performance characteristics. A selected red clover‐based treatment, considered to exhibit superior overall production characteristics, outyielded N‐fertilized perennial ryegrass in mid‐season. However, it had poorer digestibility and ensilability indices.  相似文献   

17.
The effect of defoliation interval on growth patterns of contrasting perennial ryegrass (Lolium perenne)–white clover (Trifolium repens) mixtures was studied. The dynamics of increase in leaf area, light interception and dry-matter (DM) production were measured within successive regrowth periods. No N fertilizer was applied. During 1995 six mixtures were cut eight (F1) or six times (F2) at a stubble height of 5 cm. The stubble composition was stable throughout the growing season: after harvest about 50 g DM m?2 (with a white clover proportion of 0·52) was present with a leaf area index (LAI) of 0·5 (0·38 white clover). The percentage of intercepted radiation after cutting was 20–30% and increased during 3 weeks to about 95%. The relative growth rate of leaf area and DM was higher for white clover than for perennial ryegrass, with the proportion of clover in the LAI and DM increasing during each regrowth period. Mixtures with large-leaved white clover cv. Alice had a lower initial clover content after harvest, but a more rapid increase in clover LAI and DM than mixtures with the smaller leaved cvs Gwenda or Retor. Alice had the highest total and clover LAI and DM at harvest. Cutting frequency affected the change in white clover–perennial ryegrass ratio during regrowth. This was significantly higher in mixtures with Alice than in mixtures with Gwenda, but only under less frequent cutting (F2). In spring there was a mean white clover proportion of about 0·55 in the LAI and 0·45 in the total harvested DM. In summer the white clover proportion in the LAI and DM increased to 0·70–0·75. There was a decline during autumn, especially in F2 and in the mixtures with the small-leaved white clover cv. Gwenda and the medium-leaved cv. Retor. In contrast, grass DM and LAI declined from spring to summer. The decline in clover LAI in autumn was similar in Alice and Gwenda at frequent cutting (F1), but stronger in Gwenda in F2. Retor had the lowest clover specific leaf area (SLA). The SLA values of Alice and Gwenda were similar, SLA being similar between cutting treatments. No differences were found for leaf weight ratio (LWR) among the three white clover cultivars or between the grass cultivars, and LWR was not affected by cutting treatment. Defoliation interval had limited effects on the growth pattern and leaf characteristics of perennial ryegrass–white clover mixtures.  相似文献   

18.
A method for measuring the growth, senescence and defoliation fluxes in a mixture consisting of alternate rows of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) was used to calculate the actual and potential efficiencies of grass and clover utilization under continuous sheep grazing. White clover contributed relatively more to the growth than to the herbage mass of the mixture and its relative growth rate was usually significantly greater than that of its companion grass. The primary reason for the greater potential efficiency of herbage use of the white clover component was, however, its lower rate of senescence. Greater potential efficiency was not reflected in a greater actual efficiency because the contribution of white clover to the total herbage removed was always smaller than its contribution to the growth flux of the mixture. Despite the commonly assumed sheep preference for white clover, the legume was usually the least defoliated species, presumably because of the lower surface height of white clover compared with grass, which resulted in a lower vertical availability of white clover, thereby restricting its defoliation rate. The positive net herbage accumulation observed with white clover at a constant sward surface height occurred partly through stolon and bud development and partly through the growth of undefoliated leaves from axillary growing points and contributed to a net herbage accumulation per unit dry weight in white clover greater than that in ryegrass. This resulted in an increase in the white clover content of the sward, which was observed independently by destructive measurements.  相似文献   

19.
Three experiments designed to investigate different facets of autumn management on white clover stolon development are described. The effects of defoliation interval (2, 4, 6 and 8 weeks during 16 weeks from 27 July) were investigated. The shortest interval resulted in the shortest length of stolon material per unit area but cutting interval had no effect on growing point density nor on hardiness of stolon tips evaluated in October, December and January.
Chemical grass suppressants were employed to reduce grass biomass during winter in two experiments to evaluate the influence of grass on white clover development. One experiment involved varying grass tiller density by spraying a perennial ryegrass/white clover sward in October with three rates of three chemical suppressants (Clout, Kerb and Checkmate). Although tiller and clover growing point density were inversely related in January, the overall relationship was not strong.
Clout at l·5kg a.i. ha−1 was sprayed in October on one of two subplots in each of twelve grazed grass/white clover plots that had been maintained at 7 or 9 cm from July to October then grazed to 3–4 cm with sheep. Sward height had no effect on clover population density but the shorter sward had a greater mean node number per secondary stolon branch. By March, suppressing grass resulted in more than double the stolon population density, a higher proportion of plants with tertiary and quaternary branches, and on marked stolons, five times more branches and 60% higher dry matter (DM) produced during winter but with shorter petioles compared with clover in untreated plots.
It is concluded that white clover has the capacity to branch during a mild winter and as stolon branch numbers can suffer a net loss as a result of the presence of the grass canopy, management that controls grass growth during winter should aid over-wintering and improve persistence of white clover.  相似文献   

20.
The effects of stocking rate and N fertilizer on a mixed sward of perennial ryegrass ( Lolium perenne) and white clover ( Trifolium repens ) set-stocked with sheep were examined. Sward production and composition, and sheep production were studied.
Increasing the stocking rate over the range 25–55 yearling sheep ha−1 reduced herbage accumulation by about 40%, whether or not N fertilizer was applied. Increasing the stocking rate increased the density of ryegrass tillers, but reduced the density of clover stolons and the clover content of the swards. Applications of N fertilizer (200 kg N ha−1 a−1) increased herbage accumulation by about 20% but substantially reduced the clover content.
Liveweight gain per animal and per unit area were greater at the lower stocking rates where the clover content and nutritive value of the diet were greatest. Wool growth per unit area was greater at the higher stocking rates. Applications of 1M fertilizer increased liveweight gain at stocking rates above 25 sheep ha−1, but had no effect on wool production at any stocking rate.
The results demonstrate that a stable and productive grass-clover association was maintained under conditions of set-stocking at around 23 yearling sheep ha−1and that at this stocking rate, which appears to be about the biological optimum, there was no advantage in using N fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号