首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of (R)-, (S)-, and (+/-)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acids (HTCCA) on mushroom tyrosinase was evaluated. All HTCCAs inhibited the tyrosinase activity. The ID(50) values were 1.88, 1.84, and 1.88 for the (R)-, (S)-, and (+/-)-HTCCAs, respectively. The inhibition kinetics analyzed by Hanes-Woolf plots indicated that both (R)- and (S)-HTCCAs are competitive inhibitors of the tyrosinase, with K(i) values of 0.83 and 0.61 mM, respectively. Dimethyl sulfoxide (DMSO) was also tested for its direct inhibitory activity against the tyrosinase and its potential influence on the tyrosinase inhibitory effects of (R)- and (S)-HTCCAs. DMSO, a widely used solvent for tyrosinase inhibitors, was found to dose-dependently inhibit the tyrosinase activity. Addition of DMSO in a tyrosinase digest containing either (R)- or (S)-HTCCA further dose-dependently reduced the tyrosinase activity. These data indicated a potential to use a HTCCA as a tyrosinase inhibitor in food, cosmetic, and medicinal products and a need to improve the solvent system for the studies of tyrosinase inhibitions.  相似文献   

2.
Flavonoids, a group of naturally occurring antioxidants and metal chelators, can be used as tyrosinase inhibitors due to their formation of copper-flavonoid complexes. Thus, to investigate the underlying inhibition mechanism, a large group of flavonoids from several major flavones and flavonols were tested using fluorescence quenching spectroscopy. In addition, large differences in the tyrosinase inhibitory activities and chelating capacities according to the location of the hydroxyl group(s) in combination with the A and B rings in the flavonoids were confirmed. Accordingly, the major conclusions from this work are as follows: (i) The tyrosinase inhibitory activity is not only dependent on the number of hydroxyl groups in the flavonoids, (ii) the enzyme is primarily quenched by the hydroxyl group(s) of A and B rings on the ether side of the flavonoids, and (iii) the tyrosinase inhibitory activity of 7,8,3',4'-tetrahydroxyflavone is supported by a virtual model of docking with the mushroom tyrosinase, which depicts the quenching of the enzyme. The results also demonstrated that the dihydroxy substitutions in the A and B rings are crucial for Cu2+-chelate formation, thereby influencing the tyrosinase inhibitory activity.  相似文献   

3.
Kinetics of mushroom tyrosinase inhibition by quercetin   总被引:21,自引:0,他引:21  
The effects of quercetin on the activity of mushroom tyrosinase were studied. The equilibrium constants for this inhibitor binding with the enzyme molecule were established. The inhibition mechanism obtained from Lineweaver-Burk plots show that quercetin is a competitive inhibitor. In the time course of the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by the enzyme in the presence of different concentrations of quercetin, the rate decreased with increasing time until a straight line was approached. The inhibition of tyrosinase by quercetin is a slow and reversible reaction with residual enzyme activity. The microscopic rate constants were determined for the reaction of quercetin with the enzyme.  相似文献   

4.
Cardol triene was first purified from cashew (Anacardium occidentale L.) nut shell liquid and identified by gas chromatography coupled to mass spectroscopy and nuclear magnetic resonance. The effects of this compound on the activity of mushroom tyrosinase were studied. The results of the kinetic study showed that cardol triene was a potent irreversible competitive inhibitor and the inactivation was of the complexing type. Two molecules of cardol triene could bind to one molecule of tyrosinase and lead to the complete loss of its catalytic activity. The microscopic rate constants were determined for the reaction of cardol triene with the enzyme. The anti-tyrosinase kinetic research of this study provides a comprehensive understanding of inhibitory mechanisms of resorcinolic lipids and is beneficial for the future design of novel tyrosinase inhibitors.  相似文献   

5.
Tyrosinase inhibitory and antioxidant activity of gallic acid and its series of alkyl chain esters were investigated. All inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase. However, gallic acid and its short alkyl chain esters were oxidized as substrates yielding the colored oxidation products. In contrast, the long alkyl chain esters inhibited the enzyme activity without being oxidized. This indicates that the carbon chain length is associated with their tyrosinase inhibitory activity, presumably by interacting with the hydrophobic protein pocket in the enzyme. On the other hand, the esters, regardless their carbon chain length, showed potent scavenging activity on the autoxidation of linoleic acid and 1,1-diphenyl-2-p-picryhydrazyl (DPPH) radical, suggesting that the alkyl chain length is not related to the activity. The effects of side-chain length of gallates in relation to their antibrowning activity are studied.  相似文献   

6.
Tyrosinase is a copper enzyme with broad substrate specifity toward a lot of phenols with different biotechnological applications. The availability of quick and reliable measurement methods of the enzymatic activity of tyrosinase is of outstanding interest. A series of spectrophotometric methods for determining the monophenolase and diphenolase activities of tyrosinase are discussed. The product of both reactions is the o-quinone of the corresponding monophenol/diphenol. According to the stability and properties of the o-quinone, the substrate is classified as four substrate types. For each of these substrate types, we indicate the best method for measuring diphenolase activity (among eight methods) and, when applicable, for measuring monophenolase activity (among four methods). The analytical and numerical solutions to the system of differential equations corresponding to the reaction mechanism of each case confirm the underlying validity of the different spectrophotometric methods proposed for the kinetic characterization of tyrosinase in its action on different substrates.  相似文献   

7.
Polyphenol levels in wines are affected by the wine-making process. Resveratrol is one polyphenol which has been the subject of a commendable amount of recent research. In this work, we found that resveratrol is immediately degraded by tyrosinase. A novel tyrosinase was purified from Carignan grapes. The purification process included salting out and separation on a cation-exchange column, followed by gel filtration. Tyrosinase was purified in a homogeneous form by SDS-PAGE and was characterized: its specific activity toward 3-(3,4-dihydroxyphenyl)-L-alanine (DOPA) increased by a factor of 24 with an overall recovery of 3% of initial activity. The apparent molecular mass of the purified tyrosinase was 40 kDa as determined by SDS-PAGE, and 42 kDa as determined by gel filtration. Its activity was optimal at pH 6 and at 25 degrees C. The enzyme exhibited high activity toward phenylenediamine, epicatechin, pyrogallol, DOPA, and resveratrol. Tyrosinase activity was inhibited by KCN, thiourea, and SO(2). Resveratrol levels were stable following the removal of proteins from the juice, suggesting that early spraying of grapes with SO(2) is an important factor affecting the final amount of resveratrol in wine.  相似文献   

8.
The inhibitory characteristics of two isoflavone metabolites, 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone, on mushroom tyrosinase were investigated. The two isoflavones were isolated from soygerm koji and inhibited both monophenolase and diphenolase activities of tyrosinase. Their inhibition type was demonstrated to be irreversible inhibition by preincubation and recovery experiments. By using HPLC analysis, it was found that mushroom tyrosinase could catalyze the two isoflavones. These results revealed that the two isoflavones belonged to suicide substrates of mushroom tyrosinase. The partition ratios between molecules of suicide substrate in the formation of product and in the inactivation of enzyme were determined to be 81.7 +/- 5.9 and 35.5 +/- 3.8 for 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone, respectively. From kinetic studies, maximal inactivation rate constants and Michaelis constants were 0.79 +/- 0.08 and 1.01 +/- 0.04 min(-1) and 18.7 +/- 2.31 and 7.81 +/- 0.05 microM for 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone, respectively, when L-DOPA was used as the enzyme substrate. Structure analysis comparing the inactivating activity between the two isoflavones and their structure analogues showed that not only the 7,8-dihydroxyl groups but also the isoflavone skeleton of the two isoflavones played an important role in inactivating tyrosinase activity. The present study demonstrated that 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone are potent suicide substrates of mushroom tyrosinase.  相似文献   

9.
The inhibition of mushroom tyrosinase by cucumber extracts was evaluated. The inhibitory effect was measured by both polarographic and spectrophotometric methods. The commercial aldehyde, trans,cis-2,6-nonadienal, described as a major volatile compound of cucumber, was characterized as a noncompetitive inhibitor against 4-tert-butylcatechol oxidation by mushroom tyrosinase. The K(I) obtained was 3.4 mM. Polyphenol oxidase (PPO) activity was not detected in cucumber skin extracts. However, the presence of PPO was revealed by Western blot; a single band was found with a M(r) of 53 kDa. These results support the assumption that the enzyme PPO is present in the cucumber skin, but its activity is inhibited. Peroxidase (PO) was also found in cucumber skin extracts. This enzyme was detected in the soluble fraction but not in the membrane fraction. The kinetic characterization of PO was carried out. Native isoelectric focusing revealed several acidic PO isoenzymes with a pI in the range between 5 and 6, a basic isoenzyme, and one principal neutral isoenzyme of pI = 7.2.  相似文献   

10.
In the course of our study on the isolation and structure determination of constituents in tropical plants, we focused on Peucedanum japonicum Thunb., belonging to the family Umbelliferae. In this study, a new C(13) norisoprenoid glucoside, (3S)-O-beta-d-glucopyranosyl-6-[3-oxo-(2S)-butenylidenyl]-1,1,5-trimethylcyclohexan-(5R)-ol (1), and two new phenylpropanoid glucosides, 3-(2-O-beta-d-glucopyranosyl-4-hydroxyphenyl)propanoic acid (3) and methyl 3-(2-O-beta-d-glucopyranosyl-4-hydroxyphenyl)propanoate (4), were isolated from the n-butanol soluble fraction of this plant's leaves, together with five known compounds. The structures of these compounds were determined on the basis of spectroscopic evidence. In addition, all isolated compounds were examined for scavenging activity against 1,1-diphenyl-2-picrylhydrazyl radical and inhibitory activity against mushroom tyrosinase. These results suggested that 2-(4-hydroxy-3-methoxyphenyl)propane-1,3-diol (7) and 3-O-beta-d-glucopyranosyl-2-(4-hydroxy-3-methoxyphenyl)propanol (8) showed an appreciable activity in both assay systems.  相似文献   

11.
The chemical stability and colorant properties of three betaxanthins recently identified from Celosia argentea varieties were evaluated. Lyophilized betaxanthin powders from yellow inflorescences of Celosia exhibited bright yellow color and high color purity with strong hygroscopicity. The aqueous solutions containing these betaxanthins were bright yellow in the pH range 2.2-7.0, and they were most stable at pH 5.5. The betaxanthins in a model system (buffer) were susceptible to heat, and found to be as unstable as red betacyanins (betanin and amaranthine) at high temperatures (>40 degrees C), but more stable at 40 degrees C with the exclusion of light and air. The three betaxanthins had slightly higher pigment retention than amaranthine/isoamaranthine in crude extracts at 22 degrees C, as verified by HPLC analysis. Lyophilized betaxanthins had much better storage stability (mean 95.0% pigment retention) than corresponding aqueous solutions (14.8%) at 22 degrees C after 20 weeks. Refrigeration (4 degrees C) significantly increased pigment retention of aqueous betaxanthins to 75.5%.  相似文献   

12.
The coenzyme tetrahydrofolic acid is the most rapid suicide substrate of tyrosinase that has been characterized to date. A kinetic study of the suicide inactivation process provides the kinetic constants that characterize it: λ(max), the maximum apparent inactivation constant; r, the partition ratio or the number of turnovers made by one enzyme molecule before inactivation; and k(cat) and K(m), the catalytic and Michaelis constants, respectively. From these values, it is possible to establish the ratio λ(max)/K(m), which represents the potency of the inactivation process. Besides acting as a suicide substrate of tyrosinase, tetrahydrofolic acid reduces o-quinones generated by the enzyme in its action on substrates, such as l-tyrosine and l-DOPA (o-dopaquinone), thus inhibiting enzymatic browning.  相似文献   

13.
Tyrosinase is known to be a key enzyme in melanin biosynthesis, involved in determining the color of mammalian skin and hair. Various dermatological disorders, such as melasama, age spots, and sites of actinic damage, arise from the accumulation of an excessive level of epidermal pigmentation. The inadequacy of current therapies to treat these conditions as well as high cytotoxicity and mutagenicity, poor skin penetration, and low stability of formulations led us to seek new whitening agents to meet the medical requirements for depigmenting agents. The inhibitory effect of licorice extract on tyrosinase activity was higher than that expected from the level of glabridin in the extract. This led us to test for other components that may contribute to this strong inhibitory activity. Results indicated that glabrene and isoliquiritigenin (2',4',4-trihydroxychalcone) in the licorice extract can inhibit both mono- and diphenolase tyrosinase activities. The IC(50) values for glabrene and isoliquiritigenin were 3.5 and 8.1 microM, respectively, when tyrosine was used as substrate. The effects of glabrene and isoliquiritigenin on tyrosinase activity were dose-dependent and correlated to their ability to inhibit melanin formation in melanocytes. This is the first study indicating that glabrene and isoliquiritigenin exert varying degrees of inhibition on tyrosinase-dependent melanin biosynthesis, suggesting that isoflavenes and chalcones may serve as candidates for skin-lightening agents.  相似文献   

14.
Mushroom tyrosinase was immobilized from an extract onto glass beads covered with the cross-linked totally cinnamoylated derivates of d-sorbitol (sorbitol cinnamate) and glycerine (glycerine cinnamate). The enzyme was immobilized onto the support by direct adsorption, and the quantity of immobilized tyrosinase was higher for sorbitol cinnamate, the support with the higher number of esterified hydroxyls per unit of monosacharide, than for glycerine cinnamate. The results obtained from the stereospecificity study of the monophenolase and diphenolase activity of immobilized mushroom tyrosinase are reported. The enantiomers L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, DL-alpha-methyldopa, L-isoprenaline, DL-isoprenaline, L-adrenaline, DL-adrenaline, L-noradrenaline, and D-noradrenaline were assayed with tyrosinase immobilized on a chiral support (sorbitol cinnamate), whereas L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, and DL-alpha-methyldopa were assayed with tyrosinase immobilized on a nonchiral support (glycerine cinnamate). The same Vmax(app) values for each series of enantiomers were obtained. However, the Km(app) values were different, the l isomers showing lower values than the dl isomers, whereas the highest Km(app) value was obtained with d isomers. No difference was observed in the stereospecificity of tyrosinase immobilized on a chiral (sorbitol cinnamate) or nonchiral (glycerine cinnamate) support.  相似文献   

15.
Antioxidant activity of betalains from plants of the amaranthaceae   总被引:9,自引:0,他引:9  
Antioxidant activity of betalain pigments (seven pure compounds and four combined fractions) from plants of the family Amaranthaceae was evaluated using the modified DPPH(*) (1,1-diphenyl-2-picrylhydrazyl) method. All tested betalains exhibited strong antioxidant activity. Their EC(50) values ranged from 3.4 to 8.4 microM. Gomphrenin type betacyanins (mean = 3.7 microM) and betaxanthins (mean = 4.2 microM) demonstrated the strongest antioxidant activity, 3-4-fold stronger than ascorbic acid (13.9 microM) and also stronger than rutin (6.1 microM) and catechin (7.2 microM). Antioxidant activity of the tested betalains decreased in the following order: simple gomphrenins > acylated gomphrenins > dopamine-betaxanthin > (S)-tryptophan-betaxanthin > 3-methoxytyramine-betaxanthin > betanin/isobetanin > celosianins > iresinins > amaranthine/isoamaranthine. This study also investigated and discussed the relationship between the chemical structure and the activity of the betalains. The free radical scavenging activity of the betalains usually increased with the numbers of hydroxyl/imino groups and, moreover, depended on the position of hydroxyl groups and glycosylation of aglycones in the betalain molecules.  相似文献   

16.
In the present investigation, we report the immobilization of the enzyme tyrosinase on mesoporous silica material, i.e. MCM-41 to serve as a tool for the detection of phenol. The enzyme immobilized onto the MCM-41 matrix has shown to retain its activity and is quite stable. The immobilization of enzyme has been discussed, and the various factors that affect the loading of enzyme onto MCM-41 were studied and optimized. The applicability of tyrosinase-immobilized MCM-41 was then demonstrated for the detection of phenol. The lowest detectable concentration of phenol by tyrosinase-immobilized MCM-41 was observed to be 1 mg l−1. The factors influencing the detection of phenol were then studied in detail.  相似文献   

17.
Kinetic study of the oxidation of quercetin by mushroom tyrosinase   总被引:1,自引:0,他引:1  
The kinetic behavior of mushroom tyrosinase in the presence of the flavonol quercetin was studied. This flavonol was oxidized by mushroom tyrosinase and the reaction was followed by recording spectral changes over time. The spectra obtained during the reaction showed two isosbectic points, indicating a stable o-quinone. When quercetin was oxidized by tyrosinase in the presence of cysteine and 3-methyl-2-benzothiazolone hydrazone (Besthorn's hydrazone, MBTH) isosbestic points were also observed indicating a definite stoichiometry. From the data analysis of the initial rate in the presence of MBTH, the kinetic parameters: = (16.2 +/- 0.6) microM/min, = (0.12 +/- 0.01) mM, (/) = (V(max)/K(S)(')()) = (13.5 +/- 1.4) x 10(-)(2) min(-)(1), = (6.2 +/- 0.6) s(-)(1) were determined. We propose that quercetin acts simultaneously as a substrate and a rapid reversible inhibitor of mushroom tyrosinase, depending on how it binds to the copper atom of the enzyme active site. Thus, if the binding occurs through the hydroxylic groups at the C3' and C4' positions, quercetin acts as a substrate, while if it occurs through the hydroxylic group at the C3 position of the pyrone ring, quercetin acts as an inhibitor.  相似文献   

18.
p-Hydroxybenzaldehyde thiosemicarbazone (HBT) and p-methoxybenzaldehyde thiosemicarbazone (MBT) were synthesized and established by (1)H NMR and mass spectra. Both compounds were evaluated for their inhibition activities on mushroom tyrosinase and free-cell tyrosinase and melanoma production from B(16) mouse melanoma cells. Results showed that both compounds exhibited significant inhibitory effects on the enzyme activities. HBT and MBT decreased the steady state of the monophenolase activity sharply, and the IC(50) values were estimated as 0.76 and 7.0 μM, respectively. MBT lengthened the lag time, but HBT could not. HBT and MBT inhibited diphenolase activity dose-dependently, and their IC(50) values were estimated as 3.80 and 2.62 μM, respectively. Kinetic analyses showed that inhibition type by both compounds was reversible and their mechanisms were mixed-type. Their inhibition constants were also determined and compared. The research may supply the basis for the development of new food preservatives and cosmetic additives.  相似文献   

19.
A latent isoform of Agaricus bisporus tyrosinase has been isolated and activated by benzyl alcohol, one of the major volatile compounds in mushrooms of this genus. The progress curve that describes the activation process reached the steady-state rate (V(ss)) after a lag period (tau). The rate of active tyrosinase formation was calculated by coupling the oxidation of o-diphenols to the activation process. V(ss) depended on benzyl alcohol, o-diphenol, and latent tyrosinase concentrations. The lag period depended on benzyl alcohol concentrations but not on o-diphenol and enzyme concentrations. The size of the latent mushroom tyrosinase was 67 kDa, determined by SDS-PAGE and Western blotting assays. This size was not modified after activation by benzyl alcohol. The presence of a lag period and the lack of change of the molecular mass of the protein after activation could indicate a slow conformational change of the protein to render the final active form. The values of the kinetic constants V(max) and K(m) on the o-diphenols 4-tert-butylcatechol, L-DOPA, and dopamine were different between the latent tyrosinase activated by benzyl alcohol and the commercial tyrosinase. They might indicate that a different final active tyrosinase, depending on the activator used, could arise.  相似文献   

20.
The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号