共查询到20条相似文献,搜索用时 15 毫秒
1.
Shallow open water wetlands provide critical habitat for numerous species, yet they have become increasingly vulnerable to drought and warming temperatures and are often reduced in size and depth or disappear during drought. We examined how temperature, precipitation and beaver (Castor canadensis) activity influenced the area of open water in wetlands over a 54-year period in the mixed-wood boreal region of east-central Alberta, Canada. This entire glacial landscape with intermittently connected drainage patterns and shallow wetland lakes with few streams lost all beaver in the 19th century, with beaver returning to the study area in 1954. We assessed the area of open water in wetlands using 12 aerial photo mosaics from 1948 to 2002, which covered wet and dry periods, when beaver were absent on the landscape to a time when they had become well established. The number of active beaver lodges explained over 80% of the variability in the area of open water during that period. Temperature, precipitation and climatic variables were much less important than beaver in maintaining open water areas. In addition, during wet and dry years, the presence of beaver was associated with a 9-fold increase in open water area when compared to a period when beaver were absent from those same sites. Thus, beaver have a dramatic influence on the creation and maintenance of wetlands even during extreme drought. Given the important role of beaver in wetland preservation and in light of a drying climate in this region, their removal should be considered a wetland disturbance that should be avoided. 相似文献
2.
Changes to land use and disturbance frequency threaten disturbance-dependent Lepidoptera within sandplain habitats of the northeastern United States. The frosted elfin (Callophrys irus) is a rare and declining monophagous butterfly that is found in xeric open habitats maintained by disturbance. We surveyed potential habitat for adult frosted elfins at four sites containing frosted elfin populations in southeastern Massachusetts, United States. Based on the survey data, we used kernel density estimation to establish separate adult frosted elfin density classes, and then used regression tree analysis to describe the relationship between density and habitat features. Adult frosted elfin density was greatest when the host plant, wild indigo (Baptisia tinctoria), density was >2.6 plants/m2 and tree canopy cover was <29%. Frosted elfin density was inversely related to tree cover and declined when the density of wild indigo was <2.6 plants/m2 and shrub cover was ?16%. Even small quantities of non-native shrub cover negatively affected elfin densities. This effect was more pronounced when native herbaceous cover was <36%. Our results indicate that management for frosted elfins should aim to increase both wild indigo density and native herbaceous cover and limit native tree and shrub cover in open sandplain habitats. Elimination of non-native shrub cover is also recommended because of the negative effects of even low non-native shrub cover on frosted elfin densities. The maintenance of patches of early successional sandplain habitat with the combination of low tree and shrub cover, high host plant densities, and the absence of non-native shrubs appears essential for frosted elfin persistence, but may also be beneficial for a number of other rare sandplain insects and plant species. 相似文献
3.
Impatiens noli-tangere is scarce in the UK and probably only native to the Lake District and Wales. It is the sole food plant for the endangered moth Eustroma reticulatum. Significant annual fluctuations in the size of I. noli-tangere populations endanger the continued presence of E. reticulatum in the UK. In this study, variation in population size was monitored across native populations of I. noli-tangere in the English Lake District and Wales. In 1998, there was a crash in the population size of all metapopulations in the Lake District but not of those found in Wales. A molecular survey of the genetic affinities of samples in 1999 from both regions and a reference population from Switzerland was performed using AFLP and ISSR analyses. The consensus UPGMA dendrogram and a PCO scatter plot revealed clear differentiation between the populations of I. noli-tangere in Wales and those in the Lake District. Most of the genetic variation in the UK (HT=0.064) was partitioned between (GST=0.455) rather than within (HS=0.034) regions, inferring little gene flow occurs between regions. There was similar bias towards differentiation between metapopulations in Wales, again consistent with low levels of interpopulation gene flow. This contrasts with far lower levels of differentiation in the Lake District which suggests modest rates of gene flow may occur between populations. It is concluded that in the event of local extinction of sites or populations, reintroductions should be restricted to samples collected from the same region. We then surveyed climatic variables to identify those most likely to cause local extinctions. Climatic correlates of population size were sought from two Lake District metapopulations situated close to a meteorological station. A combination of three climatic variables common to both sites explained 81-84% of the variation in plant number between 1990 and 2001. Projected trends for these climatic variables were used in a Monte Carlo simulation which suggested an increased risk of I. noli-tangere population crashes by 2050 at Coniston Water, but not at Derwentwater. Implications of these findings for practical conservation strategies are explored. 相似文献
4.
Christopher B. Anderson Clayton R. Griffith Ricardo Rozzi Orlando Dollenz 《Biological conservation》2006,128(4):467-474
North American beavers (Castor canadensis) were introduced into southern South America in 1946. Since that time, their populations have greatly expanded. In their native range, beavers shape riparian ecosystems by selectively feeding on particular plant species, increasing herbaceous richness and creating a distinct plant community. To test their effects as exotic engineers on sub-Antarctic vegetation, we quantified beaver impacts on tree canopy cover and seedling abundance and composition, as well as their impacts on herbaceous species richness, abundance and composition on Navarino Island, Cape Horn County, Chile (55°S). Beavers significantly reduced forest canopy up to 30 m away from streams, essentially eliminating riparian forests. The tree seedling bank was greatly reduced and seedling species composition was changed by suppressing Nothofagus betuloides and Nothofagus pumilio, but allowing Nothofagus antarctica. Herbaceous richness and abundance almost doubled in meadows. However, unlike beaver effects on North American herbaceous plant communities, much of this richness was due to invasion by exotic plants, and beaver modifications of the meadow vegetation assemblage did not result in a significantly different community, compared to forests. Overall, 42% of plant species were shared between both habitat types. Our results indicate that, as predicted from North American studies, beaver-engineering increased local herbaceous richness. Unlike in their native range, though, they did not create a unique plant community in sub-Antarctic landscapes. Plus, the elimination of Nothofagus forests and their seedling bank and the creation of invasion pathways for exotic plants together threaten one of the world’s most pristine temperate forest ecosystems. 相似文献
5.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates. 相似文献
6.
While it is widely understood that local abundance of benthic invertebrates can greatly influence the distribution and abundance of wetland birds, no studies have examined if wetland landscape context can mediate this relationship. We studied the influence of wetland food abundance and landscape context on use of agricultural wetlands by wintering dunlin (Calidris alpina) and killdeer (Charadrius vociferus) in the Willamette Valley of Oregon, USA, over two winters (1999-2000, 2000-2001) of differing rainfall and subsequent habitat distribution. We monitored bird use (frequency of occurrence and abundance) at a sample of wetlands differing in local food abundance (density and biomass) and landscape context [adjacent shorebird habitat (defined as ha of wet habitat with less than 50% vegetative cover and within a 2-km radius) and nearest neighbor distance]. We evaluated predictive models for bird use using linear regression and the Cp criterion to select the most parsimonious model. During the dry winter (2000-2001), dunlin exhibited greater use of sites with higher invertebrate density and biomass but also with more adjacent shorebird habitat and closest to a wetland neighbor. However, neither landscape context nor food abundance were important predictors of dunlin use during the wet winter (1999-2000). Use of sites by killdeer was unrelated to either local food abundance or landscape context measures during both winters. Our findings contribute to a growing recognition of the importance of landscape structure to wetland birds and highlight a number of implications for the spatial planning and enhancement of wetlands using a landscape approach. 相似文献
7.
We studied the effects of varied collembolan numbers on three compensatory mechanisms of nutrient uptake: fine root mass, endomycorrhizal development, and physiological uptake capacity. We grew ash (Fraxinus pennsylvanica) with or without the arbuscular mycorrhizal fungus Glomusintraradices, with 0, 10 or 50 initial Collembola (Folsomia candida). After 83 d root and uptake rates, endomycorrhizal development, and plant biomass were determined. Plant mass increased with Collembola number. Collembola interacted with mycorrhizae in their effects on N uptake and leaf N. Collembola in the absence of mycorrhizal roots were associated with lower N uptake and leaf N at 10 than at 0 or 50 initial Collembola. In contrast, Collembola in the presence of mycorrhizal roots were associated with the highest rate of N uptake and leaf N at 10 versus 0 or 50 initial Collembola. Hence as initial Collembola number increased, the relative importance of root system traits that determined N uptake changed from root physiological uptake capacity, presence of mycorrhizal roots, to fine root biomass. 相似文献
8.
Nico Eisenhauer Stephan König Alexander C.W. Sabais Francois Buscot 《Soil biology & biochemistry》2009,41(3):561-567
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance. 相似文献
9.
Julie A MatarczykAnthony J Willis John A Vranjic Julian E Ash 《Biological conservation》2002,108(2):133-141
Environmental weed invasion threatens the biodiversity of native species. Unfortunately, managing these weeds may also affect biodiversity adversely. A recent example occurred when glyphosate, a herbicide used to control the highly invasive weed, bitou bush (Chrysanthemoides monilifera ssp. rotundata), accidentally drifted over a small population of an endangered shrub, Pimelea spicata. Following concerns that the affected population would not recover and, thereby, cause the local extinction of P. spicata, we conducted a series of glasshouse and field experiments to explore the impacts of glyphosate on this endangered species. Seedlings and young plants of P. spicata, in which the tap root was undeveloped, were killed by a single application of glyphosate. Older plants with a well developed tap root also died back initially, but about 50% of individuals re-sprouted. This re-growth was associated with a significant decrease in tap root diameter, implying that further disturbance, including repeated treatment with glyphosate, would kill plants by impairing their potential for recovery. Unlike some sclerophyllous native shrubs, the tolerance of P. spicata to glyphosate was limited, even when its growth was slowed artificially by limiting water availability. Winter applications of glyphosate to manage infestations of bitou bush will impact adversely on populations of P. spicata and may also affect the other rare and endangered species whose survival is threatened by this species, even though some natives are unaffected by the herbicide. Protecting native biodiversity from bitou bush will involve sustainable weed management that minimises impacts on non-target native species. 相似文献
10.
María J. Soto 《Soil biology & biochemistry》2010,42(2):383-15743
Strigolactones have recently been suggested to be phytohormones that are present in all plants. Strigolactones are released by roots into the rhizosphere, stimulating the seed germination of parasitic plants such as Striga spp. and Orobanche spp. and play a crucial role in the interaction between plants and symbiotic arbuscular mycorrhizal fungi.By applying different concentrations of the synthetic strigolactone analogue GR24 to alfalfa (Medicago sativa) inoculated with Sinorhizobium meliloti we could show that in alfalfa nodulation is positively affected by the presence of the strigolactone analogue GR24. Moreover, we could show that this increased nodulation cannot be linked with a stimulatory effect of GR24 on the growth or the expression of nod genes of S. meliloti.Putative mechanisms operating in the plant in response to the addition of GR24 and leading to increased nodule formation by rhizobia are discussed. 相似文献
11.
The exotic C4 grass Spartina alterniflora was intentionally introduced to tidal coastal wetlands in Jiangsu province of China in 1982. Since then it has rapidly replaced the native C3 plant Suaeda salsa, becoming one of the dominant vegetation types in the coastal wetlands of China. Although plant invasion can change soil organic carbon (SOC) storage, little is known about how plant invasion influences C storage within soil fractions. We investigated how S. alterniflora invasion across an 8, 12 and 14-year chronosequence affected SOC and soil nitrogen (N), using soil fractionation and stable δ13C isotope analyses. SOC and N concentrations at 0-10 cm depth in S. alterniflora soil increased during the S. alterniflora invasion chronosequence, ranging from 3.67 to 4.90 g C kg−1 soil, and from 0.307 to 0.391 g N kg−1 soil. These were significantly higher than the values in the Suaeda salsa community, by 27.0-69.6% for SOC, and 21.8-55.2% for total N. The S. alterniflora-derived SOC varied from 0.40 to 0.92 g C kg−1 according to mixing calculations, assuming the two possible SOC sources of S. alterniflora and S. salsa, and accounted for 10.8-18.7% of total SOC in the colonized soils. The estimated accumulative rate of SOC from C4 (S. alterniflora) was 64.1 C kg−1 soil year−1 and from C3 sources was 78.1 mg C kg−1. The concentration of S. alterniflora-derived SOC significantly decreased from coarse fraction to fine fraction, and linearly increased as the period of S. alterniflora invasion increased. The highest accumulative rate of SOC from a C4 source occurred in macroaggregates, while the highest rate from C3 was in microaggregates. The storage of SOC derived from S. alterniflora in the macroaggregates was 0.27-0.44 g C kg−1 soil, accounting for 43.1-49.1% of the total C4derived SOC in the soil. Our results suggest that S. alterniflora invasion in coastal wetlands could facilitate SOC storage, because of the high potential for accumulation of the C which has been newly derived from S. alterniflora litter and roots. 相似文献
12.
We studied the impact of the invasive plant species Solidago canadensis on the species richness of vascular plants and the abundance, species richness and diversity of butterflies, hoverflies and carabid beetles in herbaceous semi-natural habitats near Ljubljana, Slovenia. The species groups were sampled in sites dominated by S. canadensis and paired nearby sites covered by semi-natural vegetation. Plant species richness and species richness, abundance and diversity of butterfly species were lower in plots dominated by S. canadensis. Hoverfly abundance, diversity and species richness were negatively affected only in July just before the onset of flowering of S. canadensis, but tended to be positively affected in August during the height of flowering of S. canadensis. Only the abundance of carabid beetles was reduced in plots dominated by S. canadensis. The responses of the insect groups seem largely driven by the effects of Solidago on the availability of essential resources like food or larval host plants. Our results suggest that insect species that are closely related to plant species composition are more vulnerable to the effects of invasive plant species than those that are loosely or only indirectly related to plant species composition. 相似文献
13.
Wetlands with rice paddies are key habitats in the conservation of biodiversity in the Mediterranean Region and are potentially suitable habitats for foraging bats, since they provide food (insects) and drinking places; nevertheless, many wetlands lack natural roosting sites. A bat-box program designed to ascertain bat-box preferences was initiated in 1999 in the Ebro Delta (NE Spain), one of the most important wetlands in Europe. A total of 69 bat-boxes of two types (single and double compartment) were placed on three supports (trees, houses, and posts) facing east or west. Pipistrellus pygmaeus occupancy rates and the number of individuals per box were monitored on 16 occasions from July 2000 to February 2004. Bat-box preferences were only detected during the breeding season. Bat abundance was higher in east-facing boxes, in double-compartment boxes, and in boxes placed on posts and houses. Boxes on natural supports (trees) were avoided. Bat-box occupancy rates were higher during the breeding season (95.6%, spring-summer) due to the formation of maternity colonies. The number of individuals in bat-boxes during the breeding season increased as the study period progressed (from summer 2000 to summer 2003), suggesting a high degree of acceptance by maternity colonies of these alternative locations. Occupancy rates observed were the highest ever reported in bat-box scientific literature. This study highlights the role of bat-box programs as useful alternative management tools for the conservation of bat populations in highly productive wetland habitats where few natural roost sites are available. 相似文献
14.
Andrew J. Rawlins Natacha Poirier Richard P. Evershed 《Soil biology & biochemistry》2006,38(5):1063-1076
Soil macrofauna play an essential role in the initial comminution and degradation of organic matter entering the soil environment and yet the chemical effects of digestion on leaf litter are poorly understood at the molecular level. This study was undertaken to assess the selective chemical transformations that saprophagous soil invertebrates mediate in consumed leaf litter. A number of pill millipedes (Glomeris marginata) were fed oak leaves (Quercus robur) after which the biomolecular compositions (lipids and macromolecular components) of the leaves and millipede faeces were compared using a series of wet chemical techniques and subsequent analysis by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). It was found that the concentrations of short chain (<C20) n-alkanoic acids, sterols and triacylglycerols reduced dramatically in the millipede faeces relative to the leaf litter. Hydrolysable carbohydrates and proteins both decreased in concentration in the faeces, whereas similar yields of phenolic components were observed for the cupric oxidation products of lignin, although the oxygenated functionalities were affected by passage through the millipede gut, yielding a more highly condensed state for lignin. This shows that the chemical composition of fresh organic matter entering the soil is directly controlled by invertebrates feeding upon the leaf litter and as such that they are key contributors to the early stages of diagenesis in terrestrial soils. 相似文献
15.
Rosana Tidon Denise Ferreira Leite Bárbara Ferreira Dobbin Leão 《Biological conservation》2003,112(3):299-305
The drosophilid Zaprionus indianus was not collected in Brazil, despite on-going drosophilid collecting, until 1999. Since 1999 this species has become common in Brazil. We present data on collections of Z. indianus in central Brazil, since its first occurrence in this region, with the goal of discussing its route of introduction in South America and aspects of its adaptation to the environment. Collections made during a 2-year period show different seasonal distribution patterns of this insect. In contrast with the low population sizes registered in 1999, during the summer of 2000 a large proliferation of this insect was detected. We show that Z. indianus is more common in the savanna sites and that its population peaks during the wet season. These preferences are discussed, and the hypothesis that the introduction in South America should have occurred in the southeast region of this continent is defended. 相似文献
16.
This paper reviews the current, apparently rapid spread of zebra mussels (Dreissena polymorpha) in Britain, discusses the possible causes of this spread, considers the potential ecological consequences, and looks at what measures could be undertaken to minimise the impacts of zebra mussels and other invasive pests in Britain's freshwaters. Five out of 27 major water companies reported increases in their regions between 2000 and 2002 and a further three acknowledged their presence. Increases were also reported by the Environment Agency, Broads Authority, angling clubs and boatyards. No one interviewed reported a decrease in zebra mussels between 2000 and 2002. The most notable increases have been in southern, central and eastern England. A newly recorded population of zebra mussels in the River Darent, Kent, contained zebra mussels in dense mats of up to 11,000 individuals m−2 and up to 20 cm in depth. There is evidence that the ecology of recently invaded sites has been deleteriously affected. A fishing lake in Lancashire has experienced increased water clarity and reduced fish biomass coincidental with the arrival of zebra mussels, while a newly recorded population in Barden Lake, Kent, appears to be having a deleterious impact on native unionid mussels, particularly the swan mussel (Anodonta cygnea) and, more, recently the painter's mussel (Unio pictorum). Repeated surveys in the River Thames, River Great Ouse and Barden Lake showed that the proportion of unionid mussels infested by zebra mussels had increased significantly in all sites studied during the past one to five years. 相似文献
17.
About 32% of Antirrhinum species are considered to be endangered; however, no field studies have focused on their reproductive biology. In this work, several aspects of the reproductive biology (flowering phenology, floral biology, breeding system) and potential limits on seed quantity and quality (pollen limitation, inbreeding depression) were studied in natural populations of three endangered species of the genus (Antirrhinum charidemi, Antirrhinum subbaeticum, Antirrhinum valentinum). Results disclose that all three species need insect visitors for seed production since fruit set after autonomous self-pollination was lower than under hand cross-pollination. A. charidemi and A. valentinum were mainly self-incompatible, whereas A. subbaeticum was self-compatible but herkogamous. Supplementary pollination in open-pollinated flowers only increased fruit set and seed set relative to controls in a given population of A. valentinum. Preliminary data on inbreeding depression at early life-cycle stages of the self-compatible A. subbaeticum revealed that the cumulative level was low. Despite the three species being closely related and sharing many ecological characteristics, they show different mating systems, and different factors limit seed quantity and quality. Thus, caution should be taken when making a common conservation plan for a group of closely related taxa. 相似文献
18.
The bacterium Wautersia [Ralstonia] basilensis has been shown to enhance the mycorrhizal symbiosis between Suillus granulatus and Pinus thunbergii (Japanese black pine). However, no information is available about this bacterium under field conditions. The objectives of this study were to detect W. basilensis in bulk and mycorhizosphere soils in a Japanese pine plantation in the Tottori Sand Dunes, determine the density of W. basilensis in soil, and determine the optimal cell density of W. basilensis for mycorrhizal formation in pine seedlings. We designed and validated 16S rRNA gene-targeted specific primers for detection and quantification of W. basilensis. SYBR Green I real-time PCR assay was used. A standard curve relating cultured W. basilensis cell density (103-108 cells ml−1) to amplification of DNA showed a strong linear relationship (R = 0.9968). The specificity of the reaction was confirmed by analyzing DNA melting curves and sequencing of the amplicon. The average cell density of W. basilensis was >4.8 × 107 cells g−1 of soil in the mycorrhizosphere and 7.0 × 106 cells g−1 in the bulk soil. We evaluated the W. basilensis cell density required for mycorrhizal formation using an in vitro microcosm with various inoculum densities ranging from 102 to 107 cells g−1 soil (104-109 cells ml−1). Cell densities of W. basilensis of >106 cells g−1 of soil were required to stimulate mycorrhizal formation. In vivo and in vitro experiments showed that W. basilensis was sufficiently abundant to enhance mycorrhizal formation in the mycorrhizosphere of Japanese black pine sampled from the Tottori Sand Dunes. 相似文献
19.
20.
Invasions of Pinus species are a major environmental concern in South Africa and New Zealand where pines are beginning to dominate native grasslands and shrublands. Pines are widely cultivated in Australia with almost a million hectares growing in large plantations. Plantations are commonly bordered by native Eucalypt vegetation resulting in a high potential for invasion and providing an opportunity to study pine invasion processes within forest environments.In order to determine if Pinus radiata equally invades different dry Eucalypt woodland vegetation types, two areas in the upper Blue Mountains in New South Wales, Australia were surveyed. Similar levels of invasion were observed in both Eucalypt forest types. An average pine abundance of 55 individuals for the Eucalyptus oreades and Eucalyptus sieberi vegetation type and 49 individuals for the Eucalyptus mannifera and Eucalyptus dives vegetation type was recorded in 20 m by 20 m plots located 50 m from the plantation boundary. To characterise the spatial distribution of the pines, transects were placed perpendicular to the plantation edge. As expected pine numbers diminished with distance from the plantation, however, large reproductive pine trees were found up to 4 km from the seed source signifying long distance dispersal.Investigation of wildling pine response to fire suggests that it may not always be an appropriate management tool. Fire stimulated seed release from cones and resulted in high recruitment of seedlings around reproductive pines which were large enough to survive the burn. Infrequent fires at intervals greater than time to maturity will lead to increased pine densities and further spread into the native vegetation. 相似文献