首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New conservation-oriented forestry aims to maintain intact populations of forest organisms by improving the conservation value of managed forests and providing protected areas. We tested the conservation value of treatments of dead wood for assemblages of early successional saproxylic beetles. In nine areas in northern Sweden, we selected one clear-cut, one mature managed forest and one reserve. In 2001-2002, we placed three blocks of spruce logs, each containing control, burned and shaded logs and a high stump (“snag”) at each site. Saproxylic beetles emerging from the dead wood were collected using emergence traps and beetles flying close to it were collected using flight-intercept traps. After one year of exposure, assemblage composition was examined, with respect to nutritionally-defined functional groups, red-listed species and fire-favoured species. Experimental snags were most complementary to control logs, supporting different assemblages of cambium consumers and fungivores and supporting more red-listed individuals. Burned logs supported depauperate assemblages, particularly with respect to cambium consumers, while shading of logs affected assemblages of fungivores, but only on clear-cuts. Despite containing less dead wood, managed forests provided valuable habitat, supporting similar assemblages of saproxylic beetles to reserves. Most functional groups were less abundant on clear-cuts than in older forests, but fire-favoured species were more common on clear-cuts, suggesting that clear-cuts may support assemblages of species associated with natural disturbances, if suitable substrates are available. Utilization of logs by saproxylic beetles changes over time, so long-term monitoring of our experimental logs will determine their lifetime conservation value.  相似文献   

2.
Saproxylic Coleoptera are diverse insects that depend on dead wood in some or all of their life stages. In even-aged boreal forest management, remnant habitats left as strips and patches contain most of the dead wood available in managed landscapes and are expected to act as refuges for mature forest species during the regeneration phase. However, use of remnant habitats by the saproxylic fauna has rarely been investigated. Our objective was to characterize the saproxylic beetle assemblages using clearcuts and forest remnants in western Québec, Canada, and to explore the effects of forest remnant stand characteristics on saproxylic beetle assemblages. We sampled both beetle adults and larvae, using Lindgren funnels and snag dissection, in five habitat locations (clearcuts, forest interiors of large patches, edges of large patches, small patches and cut-block separators) from three distinct landscapes. Adult saproxylic beetles (all feeding guilds combined) had significantly higher species richness and catch rates in small patches compared to forest interiors of large patches; the phloeophagous/xylophagous group had significantly higher species richness only. Small patches, cut-block separators and edges of large patches also had the highest snag density and basal area, increasing habitat for many saproxylic beetles. No significant differences in density of saproxylic larvae were found between habitat patches, but snag dissection nevertheless suggests that snags in forest remnants are used by comparable densities of insects. Saproxylic beetles appear to readily use habitat remnants in even-aged managed landscapes suggesting that forest remnants can insure the local persistence of these species, at least in the timeframe investigated in our study.  相似文献   

3.
Our study examines dead wood dynamics in a series of permanent plots established in closed, productive second-growth forest stands of north-west Russia and in temporary plots that represent different successional stages and types of disturbance. Dead wood stores measured on 63 plots 0.2–1.0 ha in size range from 1–8 Mg C ha?1 in young to mature intensively managed stands, 17 Mg C ha?1 in an old-growth forest, 20 Mg C ha?1 on a clear-cut, and 21–39 Mg C ha?1 following a severe windthrow. A total of 122 logs, snags, and stumps aged by long-term plot records was sampled for decay rates and to develop a system of decay classes. Annual decomposition rates are: 3.3% for pine, 3.4% for spruce, and 4.5% for birch. Based on these decay rates the average residence time of carbon (C) in the dead wood pool is 22–30 years. The mortality input on the permanent plots was 23–60 Mg C ha?1 over 60 years of observation or 15–50% of the total biomass increment. This data suggests a dead wood mass of 10–22 Mg C ha?1 would be expected in these mature forests if salvage had not occurred. In old-growth forests, dead wood comprised about 20% of the total wood mass, a proportion quite similar to the larger, more productive forests of the Pacific Northwest (USA). If this proportioning is characteristic of cool conifer forests it would be useful to estimate potential dead wood mass for old-growth forests without dead wood inventories. However, the use of a single live/dead wood ratio across the range of successional stages, a common practice in C budget calculations, may substantially over-or under-estimate the dead wood C pool depending upon the type of disturbance regime. Intensive forest management including short harvest rotations, thinning and wood salvage reduces dead wood C stores to 5–40% of the potential level found in undisturbed old-growth forest. In contrast, natural disturbance increases dead wood C pool by a factor of 2–4.  相似文献   

4.
Predicting species' responses to habitat loss is a significant challenge facing conservation biologists. We examined the response of both European three-toed woodpecker subspecies Picoides tridactylus tridactylus and P. tr. alpinus to different amounts of dead wood in a boreal and a sub-Alpine coniferous forest landscape in central Sweden and Switzerland, respectively. Habitat variables were measured by fieldwork in forests with breeding woodpeckers (n=10+12) and in control forests without breeding woodpeckers (n=10+12) in the same landscape. Logistic regression analyses revealed steep thresholds for the amount of dead standing trees and the probability of three-toed woodpecker presence in both Sweden and Switzerland. The probability of the presence of three-toed woodpeckers increased from 0.10 to 0.95 when snag basal area increased from 0.6 to 1.3 m2 ha−1 in Switzerland and from 0.3 to 0.5 m2 ha−1 in central Sweden. In Switzerland, a high road network density was negatively correlated to the presence of woodpeckers (r=−0.65, p=0.0007). The higher volumes of dead wood in Switzerland, where population trends are more positive, than in central Sweden, where the population is declining, would suggest that the volumes of dead wood in managed forests in Sweden are too low to sustain three-toed woodpeckers in the long-term. In terms of management implications, we suggest a quantitative target of at least 5% of standing trees in older forests being dead over at least 100 ha large forest areas. This corresponds about to ?1.3 m2 ha−1 (basal area) or ?15 m3 ha−1 (volume), still depending on site productivity.  相似文献   

5.
Increasing demands for firewood owing to rising energy costs have accelerated discussions about the amount of dead wood needed for conservation. A sharp increase in dead wood caused by bark beetles in a German national park provides lessons for management of commercial and protected forests. We investigated the effects of dead wood due to bark beetle infestation as well as tree senility on abundance and richness of saproxylic species of beetles. Increasing amounts of spruce dead wood and opening of the canopy by bark beetles had positive effects on the abundance of host-generalist, conifer-specialist, and red-listed saproxylic beetles. Broadleaf specialists were positively associated with the amount of broadleaf dead wood and negatively associated with canopy openness. Gradient analysis of beetle assemblages revealed two major environmental axes: canopy openness and amount of dead wood. We found a threshold for community divergence at a canopy openness of 23% (confidence interval CI: 11-49) and at an amount of dead wood of 64 m3 ha−1 (CI: 35-160). Critically endangered species served as indicators of dense and open forests, but only when the amount of dead wood was high. Our results suggest that, to maintain saproxylic beetle assemblages, the amount of dead wood in commercial montane forests (at present ≈15 m3 ha−1) needs to be tripled, with a focus on broadleaf wood in dense stands and spruce wood in open stands. For large protected areas in Europe, our data suggest that bark beetle infestation and senescence without active forest management improves habitat conditions for saproxylic beetles.  相似文献   

6.
This paper reviews the effects that windstorm-induced drastic changes (micro-climate, soil, vegetation, and ground structural heterogeneity) have on forest insect communities. In the current context of shady and CWD-deprived managed forests, windthrow gaps act as regional biodiversity hotspots by maintaining habitat continuity in a mosaic landscape, and by facilitating the breeding and population growth of clearing specialists and saproxylic species. Windthrow gaps are dead-wood islands where forest protection and habitat conservation goals may stand against each other. Besides the quantitative effect of dead wood on bark beetle outbreaks and saproxylic diversity, the latter is favoured by key dead-wood micro-habitats such as large logs, snags and sun-exposed coarse woody debris. The role of natural enemies and sanitation operations in regulating pest outbreaks is discussed. Heterogeneous openings provide many micro-habitats favouring flower-visiting insects, phytophages on saplings, on fallen tree crowns, and on diverse understory flora, as well as ground insects on specific micro-sites.  相似文献   

7.
Throughout the northern hemisphere old forests with high abundance of dead wood are rare features in most landscapes today, and the loss of dead wood constitutes a serious threat to the existence of many species. This study, using field surveys and dendrochronology, examines the relationship between wood-inhabiting fungi and past forest utilisation along a gradient of early logging activity. Data were collected in three late-successional Scots pine forests in northern Sweden. Nonmetric Multidimensional Scaling (NMS) was then used to assess differences in species composition among the forests. Our results show that minor forest logging (22-26 cut stumps ha−1) carried out a century ago may have continuing effects on forest characteristics, including dead wood dynamics and the wood-inhabiting fungal community - especially the abundance of red-listed species. The most important effects are lower numbers of logs in early and intermediate stages of decomposition. Additionally, numbers of species (including red-listed species) can be high in forests that have been subject to low levels of logging. Overall, the high species numbers recorded in this study (= 60-87) show that old, low-productivity pine forests harbour a considerable fraction of the total diversity of Basidiomycetes in northern Fennoscandian boreal forests. We conclude that the formation of a framework linking forest history and environmental data is vital for understanding the ecology and formulating goals for future management of these forests.  相似文献   

8.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

9.
Many threatened primates now exist in fragmented forest habitats. The survival of these populations may depend on their ability to utilise agricultural or other matrix habitats between forest fragments, but this is poorly known. Here, we systematically investigate an arboreal primate’s use of a heterogeneous matrix in a fragmented forest landscape: the Angola black-and-white colobus (Colobus angolensis palliatus) in southern Kenya. We used a novel technique, based on semi-structured interviews with local informants, to address the difficulty of sampling relatively rare but important events, such as dispersal between fragments. We found that colobus frequently travelled and foraged in indigenous matrix vegetation (such as mangrove, wooded shrubland and shrubland) up to 4 km from the nearest forest fragments. Agricultural habitats, such as perennial plantation (coconut, mango and cashew nut) were also used by colobus for travelling and foraging (in remnant indigenous trees). The probability of sighting colobus in the matrix increased with the proportion of both tall (>6 m) vegetation cover and food tree cover, but declined with distance from forest habitat. Our findings suggest that certain matrix habitats are important for C. a. palliatus, and that future primate conservation initiatives might benefit from adopting a ‘landscape-level’ approach to habitat management, particularly in fragmented forest systems.  相似文献   

10.
This paper presents the results of a decomposition experiment performed in a secondary chronosequence of tropical montane cloud forest in Mexico. The experiment was designed to explore whether the age of the forest influences the decomposition process and macroinvertebrate community independently of the quality of the decomposition resources. Fresh Pinus chiapensis needles and Persea americana leaves were set to decompose in each of four successional stages (15, 45, 75 and 100 years old). Results do not support the hypothesis that decomposition rate declines with increasing nutrient deficiency as forest succession proceeds. However, the chemical composition in decomposing leaves differed between successional stages. Higher availability of Ca in the 15-year-old forest appears to promote a positive feedback in the release of this nutrient from Persea americana leaves. Additionally, in old forests, a soil community that is more capable of breaking down recalcitrant material (acid detergent lignin) appears to have developed compared to early successional stages. The diversity of macroinvertebrates and abundance of predatory (Aranea and Diplura), detrivorous (Diplopoda) and geophagous (Enchytaeidae) taxa were different between boxes placed in different successional stages. We conclude that the decomposition and associated biota differ between successional stages. Apart from differences in litter quality, other factors associated with the age of the forest, such as small differences in soil temperature and long-lasting effects of disturbance, may also play influential roles.  相似文献   

11.
Bush encroachment is a serious environmental and economic problem in Namibia, but little is known about impacts on native reptile diversity. Area-confined visual surveys were used to examine a diurnal lizard assemblage in central Namibian commercial ranchlands. Surveys were conducted in plots of open savanna habitat and proximal bush-encroached habitat. The following four species comprised 97.5% of all lizard observations: Pedioplanis undata, Mabuya varia, M. striata, and Lygodactylus bradfieldi. Pedioplanis undata was terrestrial, and the remaining three species were largely arboreal in our study plots. Mabuya varia was found in all savanna plots but was absent from all bush-encroached plots. Two species (P. undata and L. bradfieldi) were less abundant in bush-encroached plots. One species (M. striata) was more abundant in bush-encroached plots than in open savanna plots. Arboreal lizards demonstrated an avoidance to invasive woody plant species. Decreased diversity of habitat structure in bush-encroached habitats appears to influence native savanna lizard assemblages. Our results are consistent with accumulating evidence suggesting that bush encroachment and its associated ecological impacts are reorganizing savanna ecosystems throughout southern Africa.  相似文献   

12.
Describing the biotic and abiotic processes that are responsible for the formation of spatial patterns in predators and their prey is crucial for improving our understanding of food–web interactions. We studied the spatial distribution of four abundant spider species and three common groups of epedaphic Collembola prey in a beech-dominated (Fagus sylvatica) forest floor habitat and related the observed patterns to environmental heterogeneity, overall predator activity (all ground beetles and spiders) and prey availability (all Collembola) at the local scale. Spiders and epedaphic Collembola were sampled over 392 days in a spatially explicit design based on a regular grid of 25 pitfall traps (inter-trap distance 100 m). Environmental heterogeneity was characterized by cover of moss and litter as well as the amount of dead wood at each trap location. We first used the index of dispersion to characterize the spatial distribution of spider species and Collembola and then related the observed patterns to environmental heterogeneity, predator and prey availability while testing for spatial autocorrelation within the same models. All taxa were significantly more aggregated than expected from the assumption of random distribution. The distribution of spider species was positively (Coelotes terrestris) or negatively (Tenuiphantes zimmermanni and Tapinocyba insecta) related to the cover of moss and negatively related to litter cover (C. terrestris) or the local availability of prey (T. insecta). The distribution of Collembola was negatively related to local litter cover (Lepidocyrtus spp.) and positively related to the amount of medium deadwood pieces (all other Entomobryidae). Our study suggests that none of the spider species preferred areas of low overall predator activity density. Moreover, it does not indicate association of spider species to prey-rich areas at the analyzed scale of 100 m. It further highlights the importance of environmental heterogeneity, as different habitat properties differentially affected the local activity density of spiders and Collembola and thus considerably contributed to the understanding of distribution patterns.  相似文献   

13.
The influence of environmental factors on species richness and species composition may be manifested at different spatial levels. Exploring these relationships is important to understand at which spatial scales certain species and organism groups become sensitive to fragmentation and changes in habitat quality. At different spatial scales we evaluated the potential influence of 45 factors (multiple regression, PCA) on saproxylic oak beetles in 21 smaller broadleaved Swedish forests of conservation importance (woodland key habitats, WKH). Local amount of dead wood in forests is often assumed to be important, but two landscape variables, area of oak dominated woodland key habitats within 1 km of sites and regional amount of dead oak wood, were the main (and strong) predictors of variation in local species richness of oak beetles. The result was similar for red-listed beetles associated with oak. Species composition of the beetles was also best predicted by area of oak woodland key habitat within 1 km, with canopy closure as the second predictor. Despite suitable local quality of the woodland key habitats, the density of such habitat patches may in many areas be too low for long-term protection of saproxylic beetles associated with broadleaved temperate forests. Landscapes with many clustered woodland key habitats rich in oak should have high priority for conservation of saproxylic oak beetles.  相似文献   

14.
The appropriate management of forest reserves is debated; two major alternatives are succession to ‘wild’ state, or management to produce semi-open stands. For temperate conservation stands, there are no strong experiments replicated at landscape level. In each of 22 forests rich in oaks (Quercus spp.) in Sweden, we set up a closed-canopy wild plot (1 ha), and a cutting plot (1 ha) to produce semi-open conditions, studying them before and after cutting. About 25% of the tree basal area was cut (large trees and dead wood retained) and harvested as bio-fuel, a CO2 - neutral energy source. We examined the response of beetles and trapped 59,000 individuals (1174 species; 100 red-listed species). For both the guild of herbivorous beetles (222 species) and of saproxylic beetles connected to oak wood (267 species), species richness increased by about 35% in the harvested plots, relative to the wild reference plots. Species composition within the groups changed, though not strongly. Thirteen saproxylic species of 50 analysed, and three herbivores of 12 increased in cutting plots. For red-listed saproxylic beetles, species richness did not change significantly. Regression analyses suggest that more open cutting plots disfavour the red-listed beetles of this forest type. Thus, partial cutting increased species diversity of two beetle groups, probably due to changed microclimate and increase in herbaceous plants, but some red-listed saproxylic beetles may be disfavoured. A hands-off alternative may through storms and other disturbances produce open patches, more dead wood, and favour some species. Combinations of these alternatives, carefully planned at the landscape level, need to be considered.  相似文献   

15.
Gray snub-nosed monkeys Rhinopithecus brelichi (Colobinae), categorized as endangered on the IUCN Red List, are endemic to Guizhou, China. To evaluate the species’ current status we surveyed five sites in the Mt Fanjing area between August 2007 and June 2008. These sites were identified from previous surveys and interviews with local officials and villagers. Four sub-populations, with a total of ca. 750 individuals, were located in mixed deciduous and evergreen broad leaf forest at 800-2200 m asl. Identified threats to the species include (1) accidentally injured or killed by poaching, (2) loss or alteration of habitat through wood extraction, and (3) loss or alteration of habitat through economic activities, such as building projects and illegal mining. We recommend that several actions can be taken to alleviate the anthropogenic pressure on the ecosystem including: (1) designating specific forest reserve for sustainable wood extraction, (2) utilizing biogas to reduce firewood demands, (3) introducing local people to bamboo utilization for generate greater cash income, (4) educating for young people and encouraging them to work in developed areas, and (5) encouraging the villagers to move out the mountain.  相似文献   

16.
Red wood ants (Formica rufa group) are important elements in boreal forest ecosystems, where they occur in high abundance and build large and long-lasting, above-ground mounds of organic material. However, little is known on their role in the carbon (C) cycling in boreal forests. We measured temperature and carbon dioxide (CO2) efflux from three different-sized wood ant mounds and the surrounding forest floor from May 2004 to April 2005 in Norway spruce [Picea abies (L.) Karst.] dominated forests in eastern Finland. Additionally, mound and forest floor temperatures were measured continuously and CO2 effluxes at 2-4-week-intervals. During the ants’ active season (May-September), measurements were conducted in the morning, afternoon, evening and at night, while fluxes were measured once a day during the ants’ inactive season. CO2 emissions from the mounds were up to nearly eight times higher than those from the surrounding forest floor during the active season of the ants, but no statistically significant differences were observed during the period from October to February. Both mound and forest floor CO2 fluxes were highly correlated to mound or forest floor temperature. Based on our measurements, we are able to estimate the annual CO2 efflux from ant mounds and the surrounding forest floor, based on nonlinear regression analyses using CO2 flux as dependant and mound or forest floor temperatures as independent variables. Although red wood ant mounds were found to be “hot spots” for CO2 efflux, that increase the spatial heterogeneity of C emissions within a forest ecosystem, their annual emissions were only 0.30% of that from the forest floor. Thus, our results indicate that red wood ant mounds do not directly contribute significantly to the overall C budget of the boreal forest ecosystem studied.  相似文献   

17.
The occupancy probability of 35 large-bodied bird and mammal species was examined in relation to patch- and landscape-scale habitat and disturbance variables in 147 forest patches distributed throughout the Mexican Yucatán Peninsula. Occupancy was assessed on the basis of interviews with local informants. The most important predictors of vertebrate species richness, composition, and patch occupancy were human population density and the extent and quality of forest cover. Most forest species responded positively to forest extent, while felids in particular were sensitive to human population density. However, the effects of human density on patch occupancy operated at extremely local scales. Effects were stronger at a smaller grain size, offering optimistic prospects for conservation strategies that incorporate human population effects. Three arboreal frugivores (Ateles geoffroyi, Alouatta pigra, and Ramphastos sulfuratus) were strongly associated with total basal area of trees bearing fleshy fruits. The degree of hunting pressure was not related to human population density, and affected the occupancy probability of three game species, two of which (Mazama spp., Crax rubra) are among the most preferred prey across the Yucatán Peninsula. Levels of patch occupancy across this region varied considerably among species, and were best explained by body size and degree of forest habitat specificity, large-bodied species and habitat specialists being the most vulnerable. This study provides a quantitative assessment of the conservation potential of large vertebrates in Mesoamerica and identifies disturbance-sensitive species. This can inform regional-scale conservation planning at a time when low deforestation in parts of the Yucatán Peninsula still provides a narrow window of conservation opportunity given the rapid human population growth.  相似文献   

18.
Diplopoda (millipedes) and Isopoda (woodlice) are among the most abundant macro-detritivores in temperate forests. These key regulators of plant litter decomposition are influenced by habitat and substrate quality, including that of dead wood. Dead wood provides shelter and resources to macro-detritivores, but the relative effects of tree species, wood decay stage, forest environment and their interactions on macro-detritivore communities are poorly known. To unravel these effects, we combined a reciprocal field incubation experiment and direct field sampling to compare the Diplopoda and Isopoda communities in logs of silver birch (Betula pendula) and Norway spruce (Picea abies) in two contrasting sites in terms of soil texture, pH, fertility and microclimate. We found: (1) a curvilinear relationship between wood decay stage and abundance of Diplopoda and Isopoda, by using wood density as a measure for the decay stage; (2) the pH of dead wood was a good predictor of wood decay stage in a site with pH close to neutrality but not in an acidic site; (3) Diplopoda and Isopoda community composition on different tree species converged during the decay process, consequently tree species are more important in the substrate selection of macro-detritivores at the beginning of their dead wood decomposition; (4) tree species, the growing environment of the trees and the decomposition environment of the logs strongly determined Diplopoda and Isopoda community composition in dead wood, these drivers of macro-detritivore communities interacted with each other and with the wood decay stage. Thus, when trying to understand and predict future patterns of macro-detritivore diversity under regimes of changing land-use and climate, these interactions should be taken into account. An important next step will be to quantify the feedback of macro-detritivore community composition to dead wood decomposition itself. This feedback may be better understood from the combination of (1) the complex interactions of tree species, wood decay stage and forest environment on the macro-detritivore community and (2) the functional traits of these macro-detritivore species. A better knowledge about these feedbacks can help in predicting carbon storage and nutrient cycling functions of dead wood in forests differing or changing in tree species composition and abiotic environment.  相似文献   

19.
The long-term dynamics of plant communities remain poorly understood in isolated tropical forest fragments. Here we test the hypothesis that tropical tree assemblages in both small forest fragments and along forest edges of very large fragments are functionally much more similar to stands of secondary growth (5-65-yr old) than to core primary forest patches. The study was carried out in a severely fragmented landscape of the Brazilian Atlantic forest. Nine functional attributes of tree assemblages were quantified by sampling all trees (DBH ? 10 cm) within 75 plots of 0.1 ha distributed in four forest habitats: small forest fragments (3.4-79.6 ha), forest edges, second-growth patches, and primary forest interior areas within a large forest fragment (3500 ha). These habitats were markedly different in terms of tree species richness, and in the proportion of pioneer, large-seeded, and emergent species. Age of second-growth stands explained between 31.4% and 88.2% of the variation in the functional attributes of tree assemblages in this habitat. As expected, most traits associated with forest edges and small forest fragments fell within the range shown by early (<25-yr old) and intermediate-aged secondary forest stands (25-45-yr old). In contrast to habitat type, tree assemblage attributes were not affected by vegetation type, soil type and the spatial location of plots. An ordination analysis documented a striking floristic drift in edge-affected habitats. Our results suggest that conservation policy guidelines will fail to protect aging, hyper-fragmented landscapes from drastic impoverishment if the remaining forest patches are heavily dominated by edge habitat.  相似文献   

20.
Staphylinid beetle assemblages from coniferous foothills forest in west-central Alberta, Canada were studied via pitfall trapping to examine the effects of stand age and possible edge effects. Sites included a chronosequence of stands from 1 to 27 years post-harvest, and four types of mature forest that had not been disturbed by fire for at least 80 years. In all, 19 sites were sampled between 1989 and 1991. A total of 98 species were identified, nine of which are reported for the first time in Alberta. Staphylinids were more abundant in mature forest stands but assemblages were more diverse in regenerating stands. Thirty-four rove beetle species showed significant indicator value for particular stands or groups of stands, including mature forest, young forest, and open ground specialists. After harvesting, the catch rate of many forest species decreased dramatically, and open ground species were more commonly collected. Populations of some forest species remained active on logged sites for one or 2 years before disappearing. As stands regenerated, they were colonized by species characteristic of young stands, but true forest species were found only in older unharvested stands. The beetle assemblages from regenerating stands became more similar to those from mature stands as they aged, but still differed considerably from them 27 years after harvesting. Transects across forest-clearcut edges revealed a significant beetle response to habitat edges. Staphylinids assemblages were compared to the ground beetle (Carabidae) assemblage sampled via the same pitfall trapping regime. Mature forest specialists are threatened by fragmentation and loss of habitat. In order to conserve these beetle assemblages, forest managers should retain adequate patches of older successional stages on working landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号