首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roads, especially large highways, can have significant impacts on wildlife movement and survival. This is especially true for wide-ranging species, such as mammalian carnivores. Some of these impacts may be mitigated if wildlife can find and utilize passageways under highways. To determine if underpasses and drainage culverts beneath highways are used by wildlife as movement corridors, we monitored 15 such passages near Los Angeles, California using remotely triggered cameras and gypsum track stations. We found that passages were used by a variety of species, including carnivores, mule deer, small mammals, and reptiles. Many types of undercrossings were utilized, indicating that passages beneath highways, even when not originally designed for wildlife, can provide important safe avenues for animals to cross roads. For mammals of conservation concern, including native carnivores and deer, passage dimensions, surrounding habitat, and the extent of human activity were assessed to determine if these factors influenced passage use by these species. Our results show that while many native mammals used passages beneath highways, the presence of suitable habitat on either side of the passage was a particularly important factor predicting use. For deer and coyotes, passage dimensions were also important and should be considered with the presence of suitable habitat when wildlife passages are planned or evaluated. To increase the likelihood of utilization and to help prevent animals from crossing road surfaces, we suggest that simple improvements such as habitat restoration near crossing points and animal-proof fencing that serves to funnel wildlife to passages, can facilitate animal movement between fragmented habitats that are bisected by roads.  相似文献   

2.
We examined the spatial patterns and factors influencing small terrestrial vertebrate road-kill aggregations in the Bow River Valley, Alberta, Canada. We surveyed roads varying in traffic volume, configuration and adjacent landscape attributes for road-kills between 1997 and 2000. The spatial pattern of road-kills was described using neighbour K statistics. We investigated the importance of road-kills at three taxonomic levels using logistic regression. Mammal and bird road-kill indices were consistently higher on a low volume parkway than on the high-speed, high volume Trans-Canada highway (TCH). Birds were more vulnerable to collisions than mammals on the TCH. Road-kill aggregations were nonrandomly distributed. Parkway road-kills were aggregated on small scales and characterized by low clustering intensities compared to the TCH. Road-kills were less likely to occur on raised sections of road. Road-kills tended to occur close to vegetative cover and far from wildlife passages or culverts. Our findings reveal how two distinct road types can have different effects in terms of vertebrate mortality and their spatial pattern. We recommend a series of mitigation measures for existing roads or future road planning projects.  相似文献   

3.
The role of the organic carbon occluded within phytoliths (referred to in this text as ‘PhytOC‘) in carbon sequestration in some soils is examined. The results show that PhytOC can be a substantial component of total organic carbon in soil. PhytOC is highly resistant to decomposition compared to other soil organic carbon components in the soil environments examined accounting for up to 82% of the total carbon in well-drained soils after 1000 years of organic matter decomposition. Estimated PhytOC accumulation rates were between 15 and 37% of the estimated global mean long-term (i.e. on a millenial scale) soil carbon accumulation rate of 2.4 g C m−2 yr−1 indicating that the accumulation of PhytOC within soil is an important process in the terrestrial sequestration of carbon. The rates of phytolith production and the long-term sequestration of carbon occluded in phytoliths varied according to the overlying plant community. The PhytOC yield of a sugarcane crop was 18.1 g C m−2 yr−1, an accumulation rate that is sustainable over the long-term (millenia) and yet comparable to the rates of carbon sequestration that are achievable (but only for a few decades) by land use changes such as conversion of cultivated land to forest or grassland, or a change of tillage practices from conventional to no tillage. This process offers the opportunity to use plant species that yield high amounts of PhytOC to enhance terrestrial carbon sequestration.  相似文献   

4.
The importance of bioturbation as an agent of soil and geomorphological change is well known but few observations have been made of spatial and temporal variations in bioturbation rates. We quantified variations in surface bioturbation by ants (particularly Aphaenogaster longiceps) and vertebrates in the sandstone terrain of the Blue Mountains, southeast Australia. Following wildfire during the period late 2001–early 2002, we monitored thirty-three 5 m2 plots positioned in six different slope units and in two catchments affected by different wildfire severities. Measurements were made seasonally for six years. Overall, mean rates of ant mounding and surface scraping by vertebrates were similar (246 ± 339 g m− 2 yr− 1 and 274 ± 179 g m− 2 yr− 1, respectively). However, rates varied substantially according to slope unit, showing a marked maximum for both ant mounding and total bioturbation on footslopes. Possible reasons for this spatial variation are discussed. A complex response to various soil and ecological factors such as soil texture, soil moisture and vegetation patterns is the most likely explanation. Associated estimates of topsoil (0–30 cm depth) turnover times, based on ant mounding rates alone, ranged from 300 to 100,000 years for different slope units. In contrast to previous findings, wildfire severity did not seem to affect bioturbation, possibly because of ant survival in deep nests and spatial patchiness of fire severity. There was likewise no clear link between temporal changes in bioturbation and fire severity; high rates in the first two years after wildfire were followed by lower rates for all burn severity types. There was also seasonal variability that was not directly related to rainfall. The results substantiate the importance of bioturbation in modifying soil characteristics and influencing soil erosion, especially following a major disturbance event like wildfire.  相似文献   

5.
Studies assessing the efficacy of wildlife crossing structures often lead to spurious results because of their failure to address masking effects of confounding variables. Confounding variables include variation in human activity, density of crossing structures along the highway corridor, and equality of species' perceived access to each crossing structure. We investigated these issues for wide-ranging large carnivores and their prey species in Banff National Park, Alberta, using data obtained from systematic, year-round monitoring of 13 newly constructed crossing structures for wildlife (underpasses and overpasses) for 34 months post-construction. We standardized the first confounding variable by selecting crossing structures remote from areas of human activity. The second confounding variable we standardized by developing probability models of crossing structure usage assuming habitat homogeneity. We standardized the third confounding variable by developing species-specific, performance indices of crossing structures (=observed through passage usage-expected through passage usage). We regressed the species performance indices against 13 crossing structure variables encompassing structural, landscape, and human activity. Our results suggest that in absence of high human activity structural attributes best explained the performance indices for both large predator and prey species, while landscape and human-related factors were of secondary importance. Crossing structures that were high, wide and short in length strongly influenced passage by grizzly bears Ursus arctos, wolves Canis lupus, elk Cervus elaphus, and deer Odocoileus sp. More constricted crossing structures were favoured by black bears Ursus americanus and cougars Puma concolor. Distance to cover was the most important crossing structure landscape attribute for cougars (negative correlation) and was a significant factor determining passage for grizzly bears, elk and deer (all positive correlations). Our findings underscore the importance of: (a) integrating temporal and spatial variability a priori when addressing the efficacy of crossing structures, and; (b) demonstrate that species respond differently to crossing structure features. In light of these results, we suggest that to maximize connectivity across roads for multiple large mammal species, road construction schemes should include a diversity of crossing structures of mixed size classes. Mitigation planning in a multiple-species ecosystem is likely to be a challenging endeavour and long-term research will aid in the decision-making process.  相似文献   

6.
Anecdotal observations suggest that some vertebrates follow plantation rows when crossing between habitat patches in fragmented landscapes, but the frequency of such behavior was never formally tested despite its potential implications for landscape management. We experimentally tested if the didelphid marsupials Didelphis aurita and Philander frenatus use plantation rows as guidelines when searching for habitat patches in a landscape of fragmented Atlantic Forest in Brazil. Thirty-seven individuals of P. frenatus and 24 of D. aurita were captured in forest fragments and released carrying spool-and-line tracking devices at four distances (30-200 m) from a forest fragment, in a matrix of manioc plantations. Animals of both species used plantation rows to orient their initial movements and used rows as guidelines along their paths for navigating in the matrix. By moving predominantly parallel to the plantation rows animals reduced the tortuosity of their paths and obtained an unobstructed view of the landscape ahead. These results demonstrate that the orientation of linear plantations can strongly influence functional connectivity between habitat fragments. Plantation rows should be oriented to maximize connection between nearby fragments, enhancing dispersal success of these species and probably many other terrestrial vertebrates in agricultural landscapes.  相似文献   

7.
Road traffic causes significant amphibian and reptile mortality, which could be mitigated through the installation of road crossing structures that facilitate safe passage, but only if reptiles and amphibians are willing to use them. Through a series of behavioral choice experiments with frogs and turtles, we examined how aperture diameter, substrate type, length, and light permeability influenced individuals’ preferences for specific attributes of crossing structures, and how individuals responded to various heights of barrier fences. Snapping turtles (Chelydra serpentina), green frogs (Rana clamitans), and leopard frogs (Rana pipiens) preferred larger diameter tunnels (>0.5 m) whereas painted turtles (Chrysemys picta) preferred tunnels of intermediate (0.5-0.6 m) diameter. Green frogs preferred soil- and gravel-lined tunnels to concrete- and PVC-lined tunnels. Painted turtles showed non-random choice of different lengths of tunnel, possibly indicating some avoidance of the longest tunnel (9.1 m); although no species preferred to exit via the longest tunnels (9.1 m), members of all four species used such tunnels. Green frogs preferred tunnels with the greatest light permeability. Fences 0.6 m in height were effective barriers to green frogs, leopard frogs, and snapping turtles, whereas 0.3 m fences excluded painted turtles. We conclude that tunnels > 0.5 m in diameter lined with soil or gravel and accompanied by 0.6-0.9 m high guide fencing would best facilitate road crossing for these and likely other frog and turtle species.  相似文献   

8.
While the importance of nearby terrestrial habitats is gaining recognition in contemporary wetland management strategies, it is rarely recognized that different wetlands are often diverse in their functions of meeting the annual or life-cycle requirements of many species, and that migration between these wetlands is also critical. Using radio-telemetry, we examined terrestrial habitat use and movements of 53 eastern long-necked turtles (Chelodina longicollis) in an area of southeast Australia characterized by spatially diverse and temporally variable wetlands. Male and female C. longicollis exhibited a high degree of dependence on terrestrial habitat, the majority (95%) of individuals using sites within 375 m of the wetland. Turtles also associated with more than one wetland, using permanent lakes during droughts and moving en masse to nearby temporary wetlands after flooding. Turtles used 2.4 ± 0.1 (range = 1-5) wetlands separated by 427 ± 62 (range = 40-1470) m and moved between these wetlands 2.6 ± 0.3 (range = 0-12) times over the course of a year. A literature review revealed that several species of reptiles from diverse taxonomic groups move between wetlands separated by a mean minimum and maximum distance of 499-1518 m. A high proportion of studies attributed movements to seasonal migrations (55%) and periodic drought (37%). In such cases we argue that the different wetlands offer complimentary resources and that managing wetlands as isolated units, even with generous terrestrial buffer zones, would not likely conserve core habitats needed to maintain local abundance or persistence of populations over the long term. Core management units should instead reflect heterogeneous groups of wetlands together with terrestrial buffer zones and travel corridors between wetlands.  相似文献   

9.
A fundamental problem in estimating biodiversity loss is that very little quantitative data are available for insects, which comprise more than two-thirds of terrestrial species. We present national population trends for a species-rich and ecologically diverse insect group: widespread and common macro-moths in Britain. Two-thirds of the 337 species studied have declined over the 35 yr study and 21% (71) of the species declined >30% 10 yr−1. If IUCN (World Conservation Union) criteria are applied at the national scale, these 71 species would be regarded as threatened. The declines are at least as great as those recently reported for British butterflies and exceed those of British birds and vascular plants. These results have important and worrying implications for species such as insectivorous birds and bats, and suggests as-yet undetected declines may be widespread among temperate-zone insects.  相似文献   

10.
Vegetation responses to fertilizers and lime applied in a seven-year study at paired unimproved and semi-improved mesotrophic hay meadows in Cumbria and Monmouthshire, UK, are described in terms of species-richness and several other plant community variables. Treatments were farmyard manure (FYM) applied at rates of between 6 and 24 tonne ha−1 annually or every third year, inorganic fertilizers giving equivalent amounts of N, P and K, and lime applied either alone or with FYM applied annually or three-yearly. Annual FYM at 24 tonne ha−1 reduced species-richness and the richness of positive indicator species at all sites and increased the proportional cover of nutrient-demanding species, whilst liming in conjunction with 12 tonne ha−1 annual FYM application was equally detrimental at the unimproved site in Wales but not in Cumbria. Inorganic fertilizers were apparently no more detrimental to vegetation quality than equivalent FYM treatments, although medium-term nutrient supply from FYM may have been underestimated. Species-richness was maintained by FYM at ?12 tonne ha−1 year−1 in the semi-natural northern meadow, where such levels had been used in the past, but only by amounts equivalent to ?6 tonne ha−1 year−1 at the Welsh sites which had no recent history of fertilizer use. It is unclear to what extent such differences are attributable to innate differences in plant community type, rather than to site-specific differences in past management. The implications of our findings for defining sustainable fertilizer practices to maintain or enhance the nature conservation value of mesotrophic meadows are discussed.  相似文献   

11.
The increasing popularity of snow-based recreation activities and the development of ski resorts and associated infrastructure have the potential to affect adversely small mammal fauna that over-winter in the subnivean space. We investigated the effects of human activities on the maintenance of the subnivean space, which is critical to the over-winter survival of small terrestrial mammals in Kosciuszko National Park, south-eastern Australia.The creation of ski pistes, surface ski lifts and over-snow routes involves compression of the snowpack and resulted in small or absent subnivean spaces (average 1.2 cm) and high snow cover densities (generally over 0.5 g cm−3 and 0.35 g cm−3 respectively). By contrast, the subnivean spaces associated with unmodified snow cover averaged 8-20 cm depending on vegetation type. The density of unmodified snowpack was less than 0.35 g cm−3 in June but increased throughout the season to levels comparable to those of compressed snow. When the snowpack was experimentally compressed at 22 sites, destroying the subnivean space, detections of two small mammal species (Rattus fuscipes and Antechinus swainsonii) significantly (p < 0.0001) declined by 75-80%. These species remain active below the snow throughout the winter and depend on the presence of an adequate subnivean space.The removal of vegetation by fire significantly (p < 0.0001) reduced the size of the subnivean space regardless of habitat type. Vegetation clearing occurs as part of ground preparation prior to establishing ski runs. Supergrooming, in which surface soil is also disturbed, is likely to have similar (if not more extreme) effects.Nival areas used for snow-based recreation should be managed to minimise negative effects on subnivean fauna, by maintaining natural features associated with subnivean space formation (dense shrubs, boulders and/or microtopography) and confining developments to areas where these features are not present.  相似文献   

12.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

13.
In-season, spatially variable nitrogen (N) fertilizer applications in agricultural systems can help to maximize crop N use efficiency and minimize N losses via hydrological leaching, runoff, and atmospheric volatilization. N fertilizer management often relies upon measurements of crop spectral reflectance using ground-based optical on-the-go sensors or hand-held chlorophyll meters. However, soil background reflectance can confound on-the-go sensing, especially during early crop growth stages, and hand-held chlorophyll meters are impractical for spatially explicit mapping at the field scale. Scanning laser technology is available that measures the intensity of the reflected laser light plus height information within a mm-scale ground instantaneous field of view at a very high sampling rate (up to 50,000 points s−1 in this study). We examined the ability to quantify foliar N status of spring wheat (Triticum aestivum L.) using a green (532 nm) terrestrial laser scanner during an early stem extension growth stage (Zadoks growth stage 3.2). Laser data were processed by (1) removing soil background returns based on laser-determined height information, (2) standardizing green laser intensity based on white-reference panel readings, and (3) filtering noisy laser returns from leaf edges based on a laser return intensity threshold value. The return intensity of the reflected green laser light more accurately (r2 = 0.68, RMSE = 0.30 μg g−1) predicted foliar N concentration than conventional chlorophyll meter readings (r2 = 0.36, RMSE = 0.41 μg g−1) and spectral indices measured by a ground optical on-the-go sensor (r2 < 0.41, RMSE > 0.39 μg g−1). The results indicate that laser scanners are useful for measuring the N status of wheat during early growth stages, and provide justification for incorporating laser scanner based measurements into developing spatially-explicit estimates of foliar N during this critical growth period. Further research is needed to evaluate the operational practicality of a green scanning laser from a moving platform.  相似文献   

14.
Methane fluxes were measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The CH4 fluxes in forest ecosystem ranged from −4.53 to 8.40 μg C m−2 h−1, in the oil palm ecosystem from −32.78 to 4.17 μg C m−2 h−1 and in the sago ecosystem from −7.44 to 102.06 μg C m−2 h−1. A regression tree approach showed that CH4 fluxes in each ecosystem were related to different underlying environmental factors. They were relative humidity for forest and water table for both sago and oil palm ecosystems. On an annual basis, both forest and sago were CH4 source with an emission of 18.34 mg C m−2 yr−1 for forest and 180 mg C m−2 yr−1 for sago. Only oil palm ecosystem was a CH4 sink with an uptake rate of −15.14 mg C m−2 yr−1. These results suggest that different dominant underlying environmental factors among the studied ecosystems affected the exchange of CH4 between tropical peatland and the atmosphere.  相似文献   

15.
Quantifying carbon dioxide (CO2) fluxes in terrestrial ecosystems is critical for better understanding of global carbon cycling and observed changes in climate. This study examined year-round temporal variations of CO2 fluxes in two biennial crop rotations during 4 year of corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] production. We monitored CO2 fluxes using eddy-covariance (EC) and soil chambers in adjacent production fields near Ames, Iowa. Under the non-limiting soil water availability conditions predominant in these fields, diel and seasonal variations of CO2 fluxes were mostly controlled by ambient temperature and available light. Air temperature explained up to 81% of the variability of soil respiratory losses during fallow periods. In contrast, with full-developed canopies, available light was the main driver of daytime CO2 uptake for both crops. Furthermore, a combined additive effect of both available light and temperature on enhanced CO2 uptake was identified only for corn. Moreover, diurnal hysteresis of net CO2 uptake with available light was also found for both crops with consistently greater CO2 uptake in the mornings than afternoons perhaps primarily owing to delay in peak of soil respiration relative to the time of maximum plant photosynthesis. Annual cumulative CO2 exchange was mainly determined by crop species with consistently greater net uptake for corn and near neutral exchange for soybean (−466 ± 38 and −13 ± 39 g C m−2 year−1). Concomitantly, within growing seasons, CO2 sink periods were approximately 106 days for corn and 90 days for soybean, and peak rates of CO2 uptake were roughly 1.7-fold higher for corn than soybean. Apparent changes in soil organic carbon estimated after accounting for grain carbon removal suggested soil carbon depletion following soybean years and neutral carbon balance for corn. Overall, results suggest changes in land use and cropping systems have a substantial impact on dynamics of CO2 exchange.  相似文献   

16.
We collected 1605 isopod individuals (eight species) and 671 diplopod individuals (17 species) in four primeval forests of the Western Carpathians, Central Slovakia, by leaf litter extraction. The forests are of different temperate deciduous forest types varying in tree species, aspect, elevation and soil characteristics. The oak forests, established on southwest oriented slopes at an elevation of 280-600 m, were characterized by Hyloniscus riparius, Porcellium conspersum, Enantiulus nanus and Ophioiulus pilosus. The beech forests, established on northeast oriented slopes at an elevation of 700-1100 m, were characterised by Ligidium hypnorum, Trachysphaera costata and Polyzonium germanicum. A remarkable increase of the total number of species and individuals occurred in both forest types adjacent to coarse woody debris (CWD). Woodlice density close to CWD was between 200 and 630 individuals m−2 (35-130 individuals m−2 distant from CWD); millipede density close to CWD ranged from 60 to 230 individuals m−2 (15-75 individuals m−2 distant from CWD). Species richness of both taxa close to CWD varied from 13 to 16 species m−2 (7-12 species m−2 distant from CWD). Thus, CWD has a significant influence on saprophages. However, structural components such as CWD and the amount of leaf litter did not significantly alter species assemblages. Species at sites distant from CWD were a subset of species at sites close to CWD. According to a canonical correspondence analysis (CCA), ‘forest type’ and ‘elevation within a slope’, as well as chemistry of the upper soil layer, i.e. ‘acidification’ and ‘nutrition’, strongly influenced species assemblages.  相似文献   

17.
The accumulation and transformation of organic matter during soil development is rarely investigated although such processes are relevant when discussing about carbon sequestration in soil. Here, we investigated soils under grassland and forest close to the North Sea that began its genesis under terrestrial conditions 30 years ago after dikes were closed. Organic C contents of up to 99 mg g−1 soil were found until 6 cm soil depth. The humus consisted mainly of the fraction lighter than 1.6 g cm−3 which refers to poorly degraded organic carbon. High microbial respiratory activity was determined with values between 1.57 and 1.17 μg CO2-C g−1 soil h−1 at 22 °C and 40 to 70% water-holding capacity for the grassland and forest topsoils, respectively. The microbial C to organic C ratio showed values up to 20 mg Cmic g−1 Corg. Although up to 2.69 kg C m−2 were estimated to be sequestered during 30 years, the microbial indicators showed intensive colonisation and high transformation rates under both forest and grassland which were higher than those determined in agricultural and forest topsoils in Northern Germany.  相似文献   

18.
Forest managers require an understanding of how vertebrate species respond and persist within the dynamics of changing forest environments so that management strategies can retain and recruit structural aspects necessary for the persistence of populations. Species-habitat models are often used to understand these relationships and are subsequently used to manage landscapes. We tested several species-habitat models to predict the presence or absence of a range of vertebrate species (n = 55) and to determine the potential of using vertical and horizontal measures of forest structure as a surrogate of species occurrence. We validated models with temporally and spatially independent data. Some of the models had good predictive accuracy that was retained when validated and thus have application in terms of implementation as management tools. Modelling success varied, however, depending on whether plot or stand data were used. Many models included variables related to spatial relationships of structures. Few models were reliable when applied to independent data; therefore, our results indicate that models cannot be assumed to be applicable in different years or applied outside the area where the model was developed, even with similar spatial and temporal contexts. Overall, we did not find robust relationships necessary to guide management targets for retention and recruitment of specific forest structures. Therefore, using these habitat models as surrogates for monitoring species occurrence is limited. Monitoring aspects of habitat should still be included as part of biodiversity monitoring programs because preservation of structures known to be negatively affected by harvesting (e.g., dead wood, large trees, closed canopies, continuous forests) contributes to local and landscape heterogeneity and has been shown to affect species presence in this study and others.  相似文献   

19.
Savanna landscapes across north Australia are characterised by limited topographic variation, and in the Northern Territory, by a relatively constant decline in rainfall with distance inland. The North Australian Tropical Transect (NATT) traverses this 1000 km gradient of largely intact vegetation which provides an ideal ‘living laboratory’ and framework to investigate the influence of vegetation structural and floristic change and climate drivers on land-atmosphere exchange at a regional scale. We conducted a multidisciplinary program examining carbon, water and energy fluxes as a function of climate and vegetation change along a sub-continental environmental gradient. Initial findings are reported in this Special Issue. During the program, an intensive field campaign was undertaken during the dry season to characterise vegetation and soil properties of eight flux tower sites used to describe spatial and temporal dynamics of fluxes across this gradient. This paper provides an overview of the savanna landscapes of north Australia detailing vegetation structural and physiological change along this gradient. Above-ground woody biomass, stem density, overstorey LAI and canopy height declined along sites that spanned an 1100 mm annual rainfall gradient. Biomass ranged from 35 to 5 t C ha−1 with dry season LAI ranging from ∼1 to 0.05 across savanna sites both intact and cleared for grazing. Across open-forest and woodland savanna, basal area ranged from 9.7 to 5.3 m2 ha−1. While structural change was significant and correlated with rainfall, leaf scale physiological properties (maximal photosynthesis, Vcmax, ci/ca, light use efficiency) of the dominant woody species showed little variation, despite the significant environmental gradient. It is likely that changes in structural properties dominate spatial patterns of flux as opposed to physiological plasticity or species differences along this gradient.  相似文献   

20.
Lead tolerance in individuals of the earthworm species Aporrectodea rosea collected from a clay pigeon shooting site was investigated. Lead concentrations in the shooting site soil and the un-shot control site were 6410±2250 and 296±98 mgPb kg−1 dry weight, respectively. Of these concentrations 1050±240 and 12±9 mgPb kg−1 dry weight were suggested to be available, using ammonium acetate (1 M), respectively. With respect to earthworm body burdens of lead the shooting site earthworms had a body burden of 6.1±1.2 mgPb g−1 dry weight while the uncontaminated site earthworms had almost a 1000-times lower body burden of 7.1±9.0 μgPb g−1 dry weight. Lead tolerance was assessed in uncontaminated soil that had been augmented with lead, using lead nitrate solutions, to obtain lead concentrations in soil of 0.5, 5 and 50 mgPb kg−1 dry weight. Earthworms were exposed for 28 days during which time a semi-qualitative assessment was made of their condition. Results showed no decrease in condition in the shooting site earthworms with increasing exposure time or concentration. In contrast, earthworms collected from an uncontaminated site showed a significant (p<0.05) decrease in condition when exposed to lead concentrations above, and including, a concentration of 5 mg kg−1 dry weight soil. These results suggested lead tolerance in the shooting site earthworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号