首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Columnaris disease can be problematic in tilapia (Oreochromis spp.) production. An understanding of the pathogenesis and virulence of Flavobacterium columnare is needed to develop prevention strategies. The objective of this study was to determine the virulence of genetically defined isolates of F. columnare in sex‐reversed hybrid tilapia, Oreochromis niloticus (L.) × O. aureus (Steindachner). A series of immersion challenge trials were performed using isolates of the five established genomovars of F. columnare: I, II, II‐B, III and I/II. The mean per cent mortality of fish challenged with genomovar I, II and III isolates ranged from 0 to 100, 3.3–78 and 3.3–75%, respectively. The mean per cent mortality of fish challenged with genomovar II‐B ranged from 35 to 96.7%, and the only genomovar I/II isolate tested caused no mortality. Contrary to previous work in other fish species, there did not appear to be an association between F. columnare genomovar and virulence in tilapia. The challenge model used resulted in acute mortality. An alternative challenge model was tested by cohabitating healthy fish with dead fish infected with F. columnare. This method resulted in rapid appearance of clinical signs and mortality, suggesting the potential for F. columnare to increase in virulence upon growth on/in a fish host.  相似文献   

2.
Vibrio anguillarum is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. However, the diversity and virulence mechanisms of this pathogen are still insufficiently known. In this study, we aimed to increase our understanding of V. anguillarum diversity and virulence through comparative genome analysis of 15 V. anguillarum strains, obtained from different hosts or non‐host niches and geographical regions, among which 10 and 5 strains were found to be virulent and avirulent, respectively, against sea bass larvae. First, the 15 draft genomes were annotated and screened for putative virulence factors, including genes encoding iron uptake systems, transport systems and non‐ribosomal peptide synthetases. Second, comparative genome analysis was performed, focusing on single nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). Five V. anguillarum strains showed a remarkably high nucleotide identity. However, these strains comprise both virulent and avirulent strains towards sea bass larvae, suggesting that differences in virulence may be caused by subtle nucleotide variations. Clearly, the draft genome sequence of these 15 strains represents a starting point for further genetic research of this economically important fish pathogen.  相似文献   

3.
Flavobacterium columnare, the causative agent of columnaris disease, causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. The current work sought to evaluate the effect of L‐rhamnose on the growth characteristics of F. columnare. While we initially did not observe any key changes during the total growth of F. columnare isolates tested when treated with L‐rhamnose, it soon became apparent that the difference lies in the ability of this carbohydrate to facilitate the formation of biofilms. The addition of different concentrations of L‐rhamnose consistently promoted the development of biofilms among different F. columnare isolates; however, it does not appear to be sufficient as a sole carbon source for biofilm growth. Our data also suggest that iron acquisition machinery is required for biofilm development. Finally, the addition of different concentrations of L‐rhamnose to F. columnare prior to a laboratory challenge increased mortality rates in channel catfish (Ictalurus punctatus) as compared to controls. These results provide further evidence that biofilm formation is an integral virulence factor in the initiation of disease in fish.  相似文献   

4.
Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to (a) characterize the terminal glycosylation pattern (TGP) of catfish mucus, (b) determine the growth of F. columnare in formulated water (FW)‐containing channel catfish (Ictalurus punctatus) or hybrid catfish (Ictalurus punctatus X Ictalurus furcatus) mucus and (c) examine extracellular protease activity of two F. columnare isolates differing in virulence. The TGP of catfish mucus by lectin binding was as follows: alpha‐D‐mannose/alpha‐D‐glucose >N‐acetyl‐beta‐D‐glucosamine >N‐acetyl‐beta‐D‐glucosamine/N‐acetylneuraminic acid >N‐acetyl‐D‐galactosamine >alpha‐D‐galactose/N‐acetyl‐alpha‐D‐galactosamine >beta‐D‐galactose = alpha‐L‐fucose. Virulence studies demonstrated isolate AL‐02‐36 was highly virulent in channel catfish fry (0.1 g) with cumulative mortality of 90%‐100% versus 60% for isolate ALG‐00‐530 at equivalent doses (~3 × 10CFU/ml); a similar result was observed in larger (0.7 g) catfish. In multiple experiments, F. columnare replicated (2‐3 logs) and survived (28 days) in formulated water‐containing catfish mucus. Highly virulent isolate AL‐02‐36 possessed at least 2.5‐ to fivefold higher protease activity following growth in mucus than the less virulent ALG‐00‐530. Flavobacterium columnare utilized catfish mucus as a nutrient source and mucus presence modulated extracellular protease production.  相似文献   

5.
Chinese chive Allium tuberosum oil was studied for its diallyl sulfide content and its antimicrobial activity against Flavobacterium columnare in fish both in vitro and. The oil was found to have a very low concentration of diallyl monosulfide relative to the other diallyl sulfides (diallyl disulfide, diallyl trisulfide, and diallyl tetrasulfide) identified. In the in vitro study, the Chinese chive oil had a bacteriocidal effect on all tested strains of F. columnare, with varied minimal inhibitory concentrations. The median lethal dose (LD50) of FC4 for Nile tilapia Oreochromis niloticus was determined to be 3.72 × 103 CFU/fish. In the in vivo trial, no mortality was observed in fish fed fish diets supplemented with 800 mg/kg Chinese chive oil and 100 mg/kg of oxytetracycline hydrochloride 5 days prior to infection with F. columnare strain 4 at a LD50. These results indicate that Chinese chive oil has the potential to replace antibiotics for controlling fish disease caused by F. columnare.  相似文献   

6.
Numerous isolates of Flavobacterium columnare were previously recovered from red tilapia, Oreochromis sp., exhibiting columnaris‐like disease in Thai farms, and the phenotypic and genetic characteristics were described. The objective of this study was to determine the virulence of two morphotypes (rhizoid and non‐rhizoid colonies) of F. columnare and to determine their ability to adhere to and persist in red tilapia fry. The results showed that the typical rhizoid isolate (CUVET1214) was a highly virulent isolate and caused 100% mortality within 24 h following bath challenge of red tilapia with three different doses. The non‐rhizoid isolate (CUVET1201) was avirulent to red tilapia fry. Both morphotypes adhered to and persisted in tilapia similarly at 0.5 and 6 h post‐challenge as determined by whole fish bacterial loads. At 24 and 48 h post‐challenge, fry challenged with the rhizoid morphotype exhibited significantly higher bacterial loads than the non‐rhizoid morphotype. The results suggested that an inability of the non‐rhizoid morphotype to persist in tilapia fry may explain lack of virulence.  相似文献   

7.
Flavobacterium columnare is a Gram‐negative bacterium causing columnaris disease of freshwater fish worldwide, and development of efficacious vaccines has been a continuous challenge in aquaculture. In this study, 14 proteins were identified from cellular components of F. columnare using an immunoblotting approach in two‐dimensional electrophoresis map gels with antibacterial sera from grass carp, Ctenopharyngodon idella (Valenciennes), and then anti‐grass carp‐recombinant Ig (rIg) polyclonal antibodies. These proteins were characterized conclusively by matrix‐assisted laser desorption/ionization‐time of flight‐mass spectrometry (MALDI‐TOF/TOF MS). The 14 proteins are immunogenic molecules of F. columnare, including chaperonins DnaK, GroEL and trigger factor, and translation elongation factor G, translation elongation factor Tu, 30S ribosomal subunit protein S1, dihydrolipoamide succinyltransferase, succinyl‐CoA synthetase, SpoOJ regulator protein, alcohol dehydrogenase, fructose‐bisphosphate aldolase, 3‐hydroxybutyryl‐CoA dehydrogenase and two conserved hypothetical proteins. These identified immunogenic proteins may provide candidate molecules for the development of vaccines against columnaris disease.  相似文献   

8.
Flavobacterium columnare is divided into three genetic groups or genomovars, genomovar II being highly virulent for channel catfish. A modified live vaccine is currently available to prevent columnaris disease under the licensed name Aquavac‐Col®. The strain of F. columnare used to generate the avirulent rifampicin‐resistant mutant used in Aquavac‐Col® belonged to genomovar I, the less virulent group towards channel catfish. In this study, we describe the generation and characterization of rifampicin‐resistant mutants from genomovar II strains. A total of 13 new mutants were obtained, and eight of them (two from each parent strain) were genetically and phenotypically characterized. Highly conserved regions within the ribosomal operons were identical between parent and mutant strains. Genetic differences between mutants and their parent strains were revealed by amplified fragment length polymorphism (AFLP). Genetic changes were distinctive among different mutants. Analysis of the lipopolysaccharide (LPS) showed that while some mutants lacked a few molecular bands of the LPS, some exhibited the same LPS profiles as their parent strains. Comparison between immunogenic proteins from mutants and parents was carried out by immunoblot analysis and further confirmed the uniqueness of individual mutants. A complete set of rifampicin‐resistant mutants with different genetic and immunogenic properties from the highly virulent genomovar II has been created. These mutants may have the potential of becoming vaccine candidates against columnaris disease.  相似文献   

9.
In this study, different traits that have been associated with bacterial virulence were studied in Yersinia ruckeri. Two isolates that had been shown to cause disease and mortality in experimentally infected rainbow trout were compared with five avirulent isolates. Both virulent isolates showed high adhesion to gill and intestinal mucus of rainbow trout, whereas the majority of non‐virulent strains demonstrated significantly lower adhesion. A decrease in adherence capability following bacterial treatment with sodium metaperiodate and proteolytic enzymes suggested the involvement of carbohydrates and proteins. All strains were able to adhere to and invade chinook salmon embryo cell line (CHSE‐214), fathead minnow epithelial cell line (FHM) and rainbow trout liver cell line (R1). One non‐virulent strain was highly adhesive and invasive in the three cell lines, whereas the virulent strains showed moderate adhesive and invasive capacity. The internalization of several isolates was inhibited by colchicine and cytochalasin‐D, suggesting that microtubules and microfilaments play a role. For all strains, intracellular survival assays showed a decrease of viable bacteria in the cells 6 h after inoculation, suggesting that Y. ruckeri is not able to multiply or survive inside cultured cells. Analysis of the susceptibility to the bactericidal effect of rainbow trout serum demonstrated that virulent Y. ruckeri strains were serum resistant, whereas non‐virulent strains were generally serum sensitive.  相似文献   

10.
Mucins are large glycoproteins that cover epithelial surfaces of the body and play important roles in prevention of inflammatory and various infectious diseases. In this study, five membrane‐bound and seven secreted mucin genes in the channel catfish were identified. All these identified mucin genes possess at least one PTS, von Willebrand D (VWD) or SEA domains. The expression of the 12 mucin genes in channel catfish was first studied with infection of Edwardsiella ictaluri and Flavobacterium columnare. Expression difference in MUC13a, MUC13, MUC2 and MUC5b was found in the intestine after E. ictaluri infection. Eight mucin gene expressions (except MUC3a, MUC2, MUC4 and MUC5f) were up‐regulated at 4 hr and down‐regulated after 24 hr in the gill with F. columnare infection. Expression level of MUC2 gene was up‐regulated in the intestine with E. ictaluri infection without no significant change in the gill under the F. columnare infection, which indicate that MUC2 is tissue‐specific gene expression and has different immune respond to two bacterial challenge. Taken together, the study showed mucin from the gill by F. columnare challenge induced an obvious response than mucin from the intestine with E. ictaluri infection.  相似文献   

11.
Vibrionaceae infections are a major obstacle for marine larviculture; however, little is known about virulence differences of Vibrio strains. The virulence of Vibrio strains, mostly isolated from vibriosis outbreaks in farmed fish, was tested in larval challenge trials with cod (Gadus morhua), turbot (Scophthalmus maximus) and halibut (Hippoglossus hippoglossus) using a multiwell dish assays with single‐egg/larvae cultures. The strains differed significantly in virulence as some caused a high mortality of larva reaching 100% mortality after a few days, while others had no or only marginal effects on survival. Some Vibrio strains were pathogenic in all of the larva species, while some caused disease only in one of the species. Twenty‐nine of the Vibrio anguillarum strains increased the mortality of larvae from at least one fish species; however, pathogenicity of the strains differed markedly. Other Vibrio species had no or less pronounced effects on larval mortalities. Iron uptake has been related to V. anguillarum virulence; however, the presence or absence of the plasmid pJM1 encoding anguibactin did not correlate with virulence. The genomes of V. anguillarum were compared (D. Castillo, P.W. D'Alvise, M. Middelboe & L. Gram, unpublished data) and most of the high‐virulent strains had acquired virulence genes from other pathogenic Vibrio.  相似文献   

12.
Interaction between bacterial pathogen and aquatic animal host is exceedingly complex, which involves large dynamic changes in gene expression during different stages of the disease. However, research on identifying key virulence genes based on the dynamics of gene expression changes of a one‐sided bacterial pathogen in tissue has not been reported so far across different stages of infectious disease. The clpV for the T6SS of Pseudomonas plecoglossicida was identified for a candidate for key virulence gene based on dynamic changes of gene expression. For the Epinephelus coioides infected using clpV‐RNAi strain, no deaths were observed up to 20 dpi. The spleens, kidneys and livers of all the E. coioides that received clpV‐RNAi strain failed to develop visible nodules at 5–8 dpi, with the swelling gradually disappearing. The burdens of clpV‐RNAi strain in the spleen and blood were greatly reduced at most of the time points after injection, and the burdens of clpV‐RNAi strain in the head kidneys and trunk kidneys also had a sharp reduction from 72 to 120 hpi. This paper provides a new insight into the discovery of key virulence genes of pathogens in infected tissue systems.  相似文献   

13.
Burbot (Lota lota maculosa) are a potential new species for commercial aquaculture. As burbot culture expands, there is a need to further define pathogen susceptibility and characterize aspects of the burbot immune response in an effort to assess fish health. A recent clinical diagnostic case from juvenile burbot reared at a commercial production facility resulted in the isolation and identification of Flavobacterium columnare along with several Aeromonas spp. The F. columnare isolate was assigned to genetic group 1 via multiplex PCR, a genetic group commonly associated with columnaris disease cases in rainbow trout (Oncorhynchus mykiss). Virulence of the F. columnare isolate was assessed in vivo in both juvenile burbot and rainbow trout. Additionally, several of the Aeromonas sp. case isolates were identified via sequencing (16S rRNA, gyrB and rpoD) and a putative A. sobria isolate (BI-3) was used to challenge burbot, along with a known virulent Aeromonas sp. (A141), but BI-3 was not found to be virulent. Burbot were refractory to F. columnare when challenged by immersion, and it is likely that this is a secondary pathogen for burbot. Although refractory in burbot, the identified F. columnare isolate (BI-1) was found to be virulent in rainbow trout.  相似文献   

14.
Piscirickettsiosis is a threatening infectious disease for the salmon industry, due to it being responsible for significant economic losses. The control of outbreaks also poses considerable environmental challenges. Despite Piscirickettsia salmonis having been discovered as the aetiological agent of the disease more than 25 years ago, its pathogenicity remains poorly understood. Among virulence factors identified so far, type four secretion systems (T4SS) seem to play a key role during the infection caused by the bacterium. We report here the genetic manipulation of Psalmonis by means of the transference of plasmid DNA in mating assays. An insertion cassette was engineered for targeting the icmB gene, which encodes a putative T4SS‐ATPase and is carried by one of the chromosomal T4SS clusters found within the genome of P. salmonis PM15972A1, a virulent representative of the EM‐90‐like strain. The molecular characterization of the resulting mutant strain demonstrated that the insertion interrupted the target gene. Further in vitro testing of the icmB mutant showed a dramatic drop in infectivity as tested in CHSE‐214 cells, which is in agreement with its attenuated behaviour observed in vivo. Altogether, our results demonstrate that, similar to other facultative intracellular pathogens, P. salmonis’ virulence relies on an intact T4SS.  相似文献   

15.
Flavobacterium columnare (Flexibacter columnaris) is an important cause of gill and skin disease in freshwater fish species, often causing high mortality. In previous studies, virulence of F. columnare was correlated with the ability to adhere to the gill tissue. To gain insight into the factors responsible for adherence, a gill perfusion model was used. The bacterial cells of the high virulence strain AJS 1 were exposed to various treatments, after which they were added to the organ bath of an isolated gill arch and adherence to the gill tissue assessed. Adherence capabilities were significantly reduced following treatment of the bacteria with sodium metaperiodate or incubating them with d-glucose, N-acetyl-d-glucosamine, d-galactose and d-sucrose. Incubation of the bacteria with trypsin and pronase did not significantly inhibit adherence. The binding sites for F. columnare on the gill tissue were also partially characterised. Treatment of the gill with sodium metaperiodate reduced adhesion, but treatment with pronase or trypsin did not cause any significant reduction, indicating that the major component of the receptor is of carbohydrate nature. Adherence ability of the bacteria correlated well with their haemagglutination capacity using chicken and guinea pig erythrocytes. Higher haemagglutination titres were obtained with the highly virulent strain AJS 1 than with strain AJS 4, a strain with low virulence and adherence capacity. Haemagglutination was partially inhibited after incubation of the bacteria with d-glucose and N-acetyl-d-glucosamine and after treatment of the bacteria at 41_°C for 10_min (minor heat treatment). It was completely abolished following incubation of the bacterial cells with sodium metaperiodate and intensive heat treatment (65_°C, 25_min). Haemagglutination was also in-sensitive to pronase and trypsin treatment. Transmission electron microscopy (TEM) revealed that the high virulence strain had a thick capsule (120–130_nm) with a regular, dense appearance, whereas the capsule of the low virulence strain was much thinner (80–90_nm) and less dense. TEM also demonstrated the loss of the capsule of the high virulence strain after treatment of the bacterial cells with minor heat and sodium metaperiodate. These results indicate that a lectin-like carbohydrate-binding substance incorporated in the capsule is responsible for the attachment of F. columnare to the gill tissue.  相似文献   

16.
Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live‐attenuated immersion vaccine (F. psychrophilum; B.17‐ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross‐protective efficacy of this B.17‐ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild‐type virulent strain, CSF‐259‐93. To assess protection, 28‐day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17‐ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17‐ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum‐specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17‐ILM vaccine strain appear to contribute to the cross‐protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live‐attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.  相似文献   

17.
Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem worldwide in both wild and cultured freshwater finfish. Despite the far-reaching negative impacts of columnaris disease, safe and efficacious preventatives and curatives for this disease remain limited. In this study, we evaluated the potential of kaolin (Al2Si205(OH)4), a type of clay, for the prevention of columnaris disease. Channel catfish, Ictalurus punctatus (Rafinesque), fingerlings were experimentally challenged with Flavobacterium columnare in untreated water or with water containing kaolin (1 g L−1). Over the 7-day course of study, kaolin treatment led to significantly (< 0.001) improved survival (96%) as compared to untreated fish (78% survival). Histological examination of the gills revealed that kaolin-treated fish had substantially less gill damage than untreated controls. Quantitative PCR analysis of gill tissue revealed that kaolin significantly reduced F. columnare adhesion (measured at 1 h post-challenge) and colonization (24 h post-challenge). Incubation of kaolin with F. columnare in vitro demonstrated that kaolin reduced the number of F. columnare cells in culture supernatants, presumably through the formation of physical complexes through adsorption. In summary, kaolin can improve survival, reduce gill pathologies and reduce bacterial attachment to key tissues associated with columnaris disease in channel catfish by binding to F. columnare.  相似文献   

18.
Flavobacterium columnare, the aetiological agent of columnaris disease, causes significant losses in fish worldwide. In this study, the prevalence of F. columnare infection was assessed in representative Great Lakes fish species. Over 2000 wild, feral and hatchery‐propagated salmonids, percids, centrarchids, esocids and cyprinids were examined for systemic F. columnare infections. Logistic regression analyses showed that the prevalence of F. columnare infection varied temporally and by the sex of the fish, whereby females had significantly higher prevalence of infection. A total of 305 isolates of F. columnare were recovered. Amplification of the near complete 16S rRNA gene from 34 representative isolates and subsequent restriction fragment length polymorphism analyses demonstrated that all belonged to F. columnare genomovar I. Phylogenetic analysis of near complete 16S rRNA gene sequences also placed the isolates in genomovar I, but revealed some intragenomovar heterogeneity. Together, these results suggest that F. columnare genomovar I is widespread in the Great Lakes Basin, where its presence may lead to mortality.  相似文献   

19.
柱状黄杆菌(Flavobacterium columnare)是一种世界范围的水产动物致病菌,是中国重要养殖鱼类草鱼(Ctenopharyngodon idellus)、鳜(Siniperca chuatsi)等烂鳃病的病原。本研究以1972年从患"烂鳃病"草鱼上分离的两株冻干柱状黄杆菌G4和G18菌株为研究对象,并将G4株再次分离纯化得纯化菌株,命名为G4R3。对草鱼鱼苗浸泡攻毒结果显示,G4R3的LD50至少比G18的高3个数量级,因此G4R3为"强毒株",G18为"弱毒株"。利用蛋白质组学方法分析柱状黄杆菌强毒株G4R3和弱毒株G18的胞外蛋白,经过双向电泳并结合图像分析,共发现了34个点是差异表达的蛋白。胶内酶解、肽质量指纹图谱和串联质谱分析后,鉴定出其中的7个蛋白点,代表滑动蛋白K、腺酐甲硫氨酸合成酶和一种可能的膜蛋白等3种蛋白,它们可能是柱状黄杆菌的毒力因子。  相似文献   

20.
Columnaris disease, caused by the bacterium Flavobacterium columnare, is currently the most frequently reported bacterial disease affecting farm‐raised channel catfish in the USA. Common treatments against the disease include the use of medicated feed that has led to emergent antibiotic resistant strains of F. columnare. Nigella sativa (Black cumin) is a medicinal herb commonly used by many cultures as a natural remedy for numerous disorders. Recently, we have discovered the antibacterial activity of N. sativa and its oil extract against F. columnare. In this study, we showed N. sativa oil (NSO) strongly inhibited the growth of all of the strains of F. columnare tested and yielded significantly larger zones of inhibition than those produced by oxytetracyclin. We tested the protective effect against columnaris disease in vivo by incorporating NSO (5%) or N. sativa seeds (NSS) (5%) into fish feeds. Fishes (Ictalurus punctatus and Danio rerio) fed amended diets displayed significantly lower mortality than those fed control diets. Per cent mortalities in control groups ranged from 77% to 44% and from 70% to 18% in zebrafish and channel catfish, respectively. A dose study using different NSS concentrations showed that 5% NSS offered the most protection against columnaris disease in channel catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号