首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saxony‐Anhalt, Germany, an area of about 6000 ha is covered by lignite‐ash‐derived substrates. In some cases, pollutants like heavy metals or toxic organic compounds had been disposed of together with the lignite ashes. For this reason, we assessed factors influencing the cation exchange capacity (CEC) of lignite‐ash substrates exposed to natural weathering. We chose four research sites reflecting the different methods of disposal: two dumped landfills and two lagooned ashes of different ages. After determining the CEC at pH 8.1 (CECpot), we evaluated the influence of the content of silt and clay and the content of total organic C. As lignite‐ash‐derived substrates are rich in oxalate‐extractable Si, Al, and Fe, we performed an oxalate extraction and determined afterwards the CECpot to assess the contribution of oxalate‐soluble compounds to the CECpot. Moreover, we determined the variable charge of selected samples at pH values ranging from 4 to 7. The lignite‐ash‐derived soils had a high CECpot with means ranging from 25.1 cmolc kg–1 to 88.8 cmolc kg–1. The influence of the parent material was more important than the degree of weathering. The content of total organic C consisting of pedogenic organic matter and coked lignite particles together with the content of silt and clay played a statistically significant role in determining the CEC. Another property that influenced the amount of CEC in medium textured lignite ashes was the content of oxalate‐soluble silica and aluminum. After oxalate extraction, they lost about 30% of their CEC due to the dissolution of oxalate‐soluble compounds. In coarse textured lignite ashes, oxalate extraction led to higher amounts of CEC, probably due to an increase of surface area resulting either from the disintegration of particles or from etching caused by insufficient dissolution of magnetite and maghemite. Moreover, lignite‐ash‐derived substrates exhibit a high amount of pH‐dependent charge. The CEC decreased by 40% in a topsoil sample and by 51% in a subsoil sample as the pH declined from 7 to 4.  相似文献   

2.
Red-Yellow soils are widely developed on terraces and hilly lands in the south-western half of Japan. They do not show any evidence of bleaching in the lower part of the A horizon, and are characterized by an extremely strong acid reaction, and a very low base-status9). There are few studies on clay mineralogy of Red-Yellow soils in Japan. Egawa et al4). have reported on clay mineralogy of soils derived from the Pleistocene and the Tertiary sediments most of which may be regarded as Red-Yellow soils. Matsui and Katô10) have described clay minerals of Red-Yellow soils derived from the Pleistocene sediment in the environs of Shinjobara, Shizuoka Prefecture. These investigations indicated that clay minerals of Red-Yellow soils derived from the Pleistocene sediments consisted mainly of kaolin minerals, whereas those of Red-Yell ow soils derived from the Tertiary sediments were of the kaolin-illite association.  相似文献   

3.

Purpose  

The study of phosphorus (P) transfer from soils to rivers is a subject of interest as there is a clear relation between land use and water quality. P transfer in the soil/sediment system was evaluated by comparing the concentrations of total (PT) and bioavailable P (PA).  相似文献   

4.
To improve phosphorus (P) fertilization and environmental assessments, a better understanding of release kinetics of solid-phase P to soil solution is needed. In this study, Fe (hydr)oxide-coated filter papers (Fh papers), isotopic exchange kinetics (IEK) and chemical extractions were used to assess the sizes of fast and slowly desorbing P pools in the soils of six long-term Swedish field experiments. The P desorption data from the Fh-paper extraction of soil (20 days of continual P removal) were fitted with the Lookman two-compartment desorption model, which estimates the pools of fast (Q1) and slowly (Q2) desorbing P, and their desorption rates k1 and k2. The amounts of isotope-exchangeable P (E) were calculated (E1min to E>3 months) and compared with Q1 and Q2. The strongest relationship was found between E1 min and Q1 (r2 = .87, p < .01). There was also an inverse relationship between the IEK parameter n (the rate of exchange) and k1 (r2 = .52, p < .01) and k2 (r2 = .52, p < .01), suggesting that a soil with a high value of n desorbs less P per time unit. The relationships between these results show that they deliver similar information, but both methods are hard to implement in routine analysis. However, Olsen-extractable P was similar in magnitude to Q1 (P-Olsen = 1.1 × Q1 + 2.3, r2 = .96), n and k1 were related to P-Olsen/P-CaCl2, while k2 was related to P-oxalate/P-Olsen. Therefore, these extractions can be used to estimate the sizes and desorption rates of the different P pools, which could be important for assessments of plant availability and leaching.  相似文献   

5.
The potassium (K) content of soils developed from Pleistocene calcareous till, glacial sand and loess in NW Germany was investigated in order to characterize stores of K in feldspars (Kfeldspar) and mica/illite (Kmica/illite) as well as changes as a function of soil depth. From each horizon, up to seven sand, six silt and three clay fractions were separated. Kfeldspar and Kmica/illite were quantified by means of chemical composition and estimation by IR‐spectroscopy. On account of distinct differences in mineralogical composition between different particle size fractions, K‐content of the bulk soil < 2000 μm and the proportion of Kmica/illite and Kfeldspar are clearly related to grain size distribution of the sample. Generally, the K‐content of particle size fractions of a soil derived from calcareous till is significantly higher than that of a soil from glacial sands. Kmica/illite of clay and silt fractions increases with depth, reflecting greater mica/illite weathering at the soil surface, whereas Kfeldspar shows no noticeable change. Illite accumulates by lessivage in Bt horizons. On a whole‐soil basis, the Bt horizons of Luvisols derived from loess and calcareous till contain more Kmica/illite than either the A or the C horizons. By comparing the K‐content in the different particle size fractions with soil depth, the highest rate of change is found for soils derived from glacial sand. Gains in K in the silt fractions of soils from calcareous till and glacial sand result from weathering of feldspar sand grains. Additionally, decomposition of feldspar‐containing rock fragments of gravel size, and aeolian sedimentation, may also have contributed to these gains.  相似文献   

6.
Eight pedotransfer functions (PTF) originally calibrated to soil data are used for evaluation of hydraulic properties of soils and deeper sediments. Only PTFs are considered which had shown good results in previous investigations. Two data sets were used for this purpose: a data set of measured pressure heads vs. water contents of 347 soil horizons (802 measured pairs) from Bavaria (Southern Germany) and a data set of 39 undisturbed samples of tertiary sediments from deeper ground (down to 100 m depth) in the molasse basin north of the Alps, containing 840 measured water contents vs. pressure head and unsaturated hydraulic conductivity. A statistical analysis of the PTFs shows that their performance is quite similar with respect to predicting soil water contents. Less satisfactory results were obtained when the PTFs were applied to prediction of water content of sediments from deeper ground. The predicted unsaturated hydraulic conductivities show about the same uncertainty as for soils in a previous study. Systematic deviations of predicted values indicate that an adaptation of the PTFs to the specific conditions of deeper ground should be possible in order to improve predictions.  相似文献   

7.
E. Auxtero  M. Madeira  E. Sousa 《Geoderma》2008,144(3-4):535-544
P sorption and desorption capacities were determined on 30 soil horizons (surface and subsurface) of soils with andic properties from the Azores, Portugal, using the Langmuir equation and successive extractions with dilute calcium chloride (CaCl2), respectively. The proportion of P recovery (Prec) using distilled water (H2O), CaCl2, Bray 2 (B2), Mehlich 3 (M3), Egnér–Riehm (ER) and Olsen (OL) extractants was also determined to assess the extent of P release from soils enriched with P at P sorption maxima (Pm). Soils containing very low amounts of organic C and allophane (Vitrandic Haplustepts and Vitrandic Udorthents) showed the lowest values of Pm (48–565 mg kg− 1) and the highest values of P desorbability (Pdes) (69–100%), indicating that P can be easily lost from these soils. Application of fertilizers to these soils should be restrained in order to minimize eutrophication risk of nearby water bodies. In contrast, allophanic and non-allophanic horizons of Typic Placudands, Alic Hapludands, Acrudoxic Hapludands and Acrudoxic Hydrudands showed much higher values of Pm (2273–52,400 mg kg− 1) and lower values of Pdes (4–57%).They also showed low proportions of Prec by the used extractants, indicating that large amounts of P can be sorbed in an unavailable form. Thus, these soils may require large amounts of P fertilizers and an efficient method of P application. Other studied soils with high amounts of 1:1 layer silicate minerals and having weak andic properties (Typic and Andic Haplustepts), showed intermediate Pm (1124–8333 mg kg− 1) and Pdes values (20–63%).

The values of Pm were positively correlated with Ald, Alo, allophane, Feo, Fed and Alp contents, and with the values of Alo + 1/2 Feo. In contrast, values of Pdes were negatively correlated with these soil constituents. Of the six extractants, the B2 extractant showed generally higher proportions of Prec than the other extractants in most studied soils. The proportions of Prec by the B2, M3, ER and OL extractants were negatively correlated with contents of Feo, Fed, Ald, Alo, Alp, and Fep, and with the values of Alo + 1/2 Feo and PR.  相似文献   


8.
Abstract

The Olsen solution is usually considered the best extractant for estimating P availability in calcareous soils, but predictability of the response to P fertilizers is often low under field conditions. In this study, soil characteristics influencing P sorption and extractability were evaluated. Forty‐one soils varying in CaCO3, pH, and clay content were selected from pastures to minimize the effect of recent P additions. A P sorption index (PSI) determined from a single addition of 150 mg P/100 g soil was related to soil Ca and CaCO3, but the correlation coefficients were rather low (r = 0.46 and 0.38, respectively). A P availability index (PAI), determined from the increase in extractable soil P after adding 50 mg P/kg to a suspension and allowing it to dry, was correlated quite well with cation exchange capacity and clay content (r = ‐0.61 for each) in soils with pH < 8.8. The PAI also had a positive relationship with the density of the processed soil sample (r = 0.60). The relationship between PAI and soil Ca (r = ‐0.51) was also better than that between PSI and soil Ca. Inclusion of initial soil P and organic carbon along with CEC increased the predictability of PAI from 37% to 59%. In soils with pH > 8.8, soil pH was the dominant factor controlling the PAI (r = 0.92).  相似文献   

9.
The magnetic properties and magnetic mineralogy of a weathering sequence of soils developed on basalt parent material from eastern China, were studied by rock magnetism, X-ray diffraction and soil chemical analyses to establish the connection between mineral magnetic properties and pedogenic development in a subtropical region. The magnetic susceptibility of soils formed on basalt varied greatly and did not increase with the degree of pedogenic development. The frequency-dependent susceptibility (χfd) values of soils ranged from 1.0 to 11.1% and increased with the pedogenic development. Highly significant linear relationship was found between the frequency-dependent susceptibility and the Fed content (R2 = 0.683) and Fed/Fet ratio (R2 = 0.780) in soils, indicating that pedogenic SP ferrimagnetic grains were associated with enrichment of the secondary iron oxide minerals in the weathering process of soil. Rock magnetism analysis showed that the major magnetic carriers in the weakly weathered soil profiles are magnetite and/or maghemite, and the highly developed soil profiles are generally enriched in magnetite/maghemite grains of pedogenic origin and the magnetically hard haematite, indicating that the magnetic component was transformed from a ferrimagnetic phase (magnetite) to antiferromagnetic phase (hematite) during pedogenic development. Results indicated that some of the magnetic parameters of soils, in this case χfd, can be useful for pedogenic comparisons and age correlations in the weathering sequence of soil. It is thus suggested that multiparameter rock magnetic investigations represent a more powerful approach for pedogenesis.  相似文献   

10.
Wood ash is a residual material produced during biomass burning. In the northeastern United States up to 80 % of the ash is spread on agricultural lands as a liming amendment with the remainder being disposed of in landfills. As well as raising soil pH, wood ash also adds plant nutrients to soil. This study is an examination of the plant availability of the P in 8 different soils amended with one wood ash. Plant availability was assessed by measuring the biomass and P concentration of corn (Zea mays) L.) plants grown in the greenhouse for 28 d in soil amended with either CaCO3 (control), wood ash to supply 200 mg kg?1 total P, or monocalcium phosphate (MCP) to supply 200 mg kg?1 total P and CaCO3. Both corn growth and P uptake were highest in the MCP treatments, intermediate in the wood ash treatments, and lowest in the controls for all soil types. The soil property which seemed to have the greatest influence on P availability was pH buffer capacity. The soils with the greatest capacity to buffer OH additions also tended to exhibit the greatest absolute P uptake from wood ash-amended soils and the greatest P uptake relative to that from MCP-amended soils. The ability of soil test extractants to predict uptake of P in the three soil treatments was examined. A buffered ammonium acetate extradant overestimated P availability in the ash-amended soils relative to the MCP-amended soils. An unbuffered, acid, fluoride-containing extract provided a measure of P levels that was consistent with P uptake from all soil treatments. In this study the predictive relationship was as follows: P uptake = 0.017× (Bray P, mg kg?1) + 1.19; r = 0.81.  相似文献   

11.
Development and use of a database of hydraulic properties of European soils   总被引:21,自引:0,他引:21  
J. H. M. W  sten  A. Lilly  A. Nemes  C. Le Bas 《Geoderma》1999,90(3-4):169-185
Many environmental studies on the protection of European soil and water resources make use of soil water simulation models. A major obstacle to the wider application of these models is the lack of easily accessible and representative soil hydraulic properties. In order to overcome this apparent lack of data, a project was initiated to bring together the available hydraulic data which resided within different institutions in Europe into one central database. This information was then used to derive a set of pedotransfer functions applicable to studies at a European scale. These pedotransfer functions predict the hydraulic properties from parameters collected during soil surveys and can be a good alternative for costly and time-consuming direct measurement of these properties. A total of 20 institutions from 12 European countries collaborated in establishing the database of draulic operties of uropean oils (HYPRES). This database has a flexible relational structure capable of holding a wide diversity of both soil pedological and hydraulic data. As these data were contributed by 20 different institutions it was necessary to standardise both the particle-size and the hydraulic data. A novel similarity interpolation procedure was successfully used to achieve standardization of particle-sizes according to the FAO clay, silt and sand particle-size ranges. Standardization of hydraulic data was achieved by fitting the Mualem-van Genuchten model parameters to the individual θ(h) and K(h) hydraulic properties stored in HYPRES. The HYPRES database contains information on a total of 5521 soil horizons (including replicates). Of these, 4030 horizons had sufficient data to be used in the derivation of pedotransfer functions. Information on both water retention and hydraulic conductivity was available for 1136 horizons whereas 2894 horizons had only information on water retention. Each soil horizon was allocated to one of 11 possible soil textural/pedological classes derived from the six FAO texture classes (five mineral and one organic) and the two pedological classes (topsoil and subsoil) recognised within the 1:1 000 000 scale Soil Geographical Data Base of Europe. Next, both class and continuous pedotransfer functions were developed. By using the class pedotransfer functions in combination with the 1:1 000 000 scale Soil Map of Europe, the spatial distribution of soil water availability within Europe was derived.  相似文献   

12.
Cation exchange properties of acid forest soils of the northeastern USA   总被引:2,自引:0,他引:2  
Negative correlations between soil pH and cation exchange capacity (CEC) or base saturation in soils of the northeastern USA and Scandinavia have raised questions regarding the nature of cation exchange in acid forest soils. Using data from three small‐catchment studies and an extensive regional survey of soils in the northeastern USA, I examined relationships among total carbon, effective CEC (CECe), soil pHs (in 0.01 m CaCl2) and base saturation. Organic matter is the predominant source of soil surface charge in these coarse‐grained, glacially derived soils. Correlation coefficients (r) between total carbon and CECe ranged from 0.43 to 0.74 in organic horizons and from 0.46 to 0.83 in mineral horizons. In all cases, the intercepts of functional relations between CECe and total C were near zero. In O horizons, the CECe per unit mass of organic carbon (CECe:C) was positively correlated with pHs in three of the four data sets, consistent with the weak‐acid behaviour of the organic matter. However, CECe:C was negatively correlated with pHs in mineral soils in two data sets, and uncorrelated in the other two. The CECe in mineral soils represents the portion of total CEC not occupied by organically bound Al. The negative correlations between CECe:C and pHs can therefore be explained by increased Al binding at higher pHs. Aluminium behaves like a base cation in these soils. When Al was considered a base cation, the relation between base saturation and pHs could be effectively modelled by the extended Henderson–Hasselbalch equation. When modelled without Al as a base cation, however, there were no consistent relationships between pHs and base saturation across sites or soil horizons. Because of the non‐acidic behaviour of Al, it is difficult to predict the effect of ongoing reductions in acid deposition on the base status of soils in the northeastern USA.  相似文献   

13.
The lack of comprehensive data on the bulk density of soil types at the European scale is a serious limitation for pan‐European environmental risk assessment studies. Although many predictive methods have been published, most have limitations for application across Europe. We therefore developed a semi‐empirical method of prediction using a large UK dataset and tested it and some other methods against a pan‐European dataset. Our method indicated that five separate conceptual groupings of the development dataset were valid. Predictive equations based on multiple regression analysis for each of the five groups explained between 40 and 69% of the measured variation in each one. When used to predict measured bulk density from the European dataset, the equations explained 63% of the measured variation in mineral horizons from soil environments similar to those of the development dataset with a predictive mean percentage error of ±11%. The equation for organic horizons explained 29% of the measured variation in bulk density with a mean percentage error of ±39%. For those horizons from soil environments outside those of the development dataset, prediction of bulk density was relatively poor, even when using soil region‐specific PTFs derived from its data. It was concluded that, for these soils, factors other than organic carbon, particle size, horizon depth, mechanical cultivation or parent material have a major influence on bulk density and need further investigation.  相似文献   

14.
姜军  赵安珍  杨聪  朱大威  徐仁扣 《土壤》2011,43(6):987-992
利用采自江苏省农业科学院果园的旱地黄棕壤(对照)和由黄棕壤发育水耕20年和60年的水稻土,研究了土壤黏粒和粉粒的矿物组成,胶体和土体的化学性质随水耕年限的变化.粉粒的X-射线衍射图谱表明,3种供试土壤发育母质相似,胶体的矿物组成随水耕年限的变化不大.动电电位和表面负电荷的测定结果也表明,胶体表面化学性质未发生明显变化.随水耕年限增加,土壤黏粒含量降低,导致土体性质发生明显变化,土壤CEC和结构电荷量随水耕年限增加显著减少.  相似文献   

15.
ABSTRACT

In Malaysia, soils derived from sedimentary rocks are extensively used for agricultural purposes with oil palm and rubber being the main dwellers. In order to understand the environmental impact of these perennial crops planting, the variability of physicochemical properties of 25 representative soils derived from sedimentary rocks under different ecosystems (agriculture land and natural forest) at six study sites spread across Malaysia was examined. Among the soil physicochemical properties, total soil organic carbon, total nitrogen, and fertility level were found to be generally higher in the forest ecosystems followed by rubber plantation and finally oil palm plantations. Likewise, projection of principal component analysis showed an associative relationship between soil physicochemical properties and microhabitats. Finally, this study showed that soils from different agricultural and natural sites, but derived from similar sedimentary rocks, had distinctive weathering conditions and soil properties. Therefore, site-specific field management according to soil type, soil management techniques as well as fertilizer strategies are required to maximize crop production and to sustain ecosystem services. The output of this study will enable farmers to improve their crop yield via the selection of suitable crops cultivation based on soil characteristics.  相似文献   

16.
姜军  赵安珍  徐仁扣  程程 《土壤学报》2010,47(4):776-780
<正>热带、亚热带地区的可变电荷土壤由于遭受强烈的风化和淋溶作用并富含铁铝氧化物,其表面化学性质与温带地区的恒电荷土壤显著不同。其中最重要的差别在于这类土壤的表面电荷随着pH等环境条件的改变而变化[1]。过去对我国南方可变电荷土壤的表面电化学性质已开展了比较多的研  相似文献   

17.
姜军  徐仁扣  赵安珍 《土壤》2010,42(2):275-279
利用采自雷州半岛和海南岛北部不同年代喷发的玄武岩发育的6种土壤,研究了土壤的游离氧化铁、铁的游离度、CEC和土壤胶体动电电位与成土母岩年龄的关系,探讨土壤表面化学性质与成土的时间和空间因素的关系。结果表明:土壤游离铁和铁的游离度与母岩年龄间存在很好的线性相关性,铁的游离度与母岩年龄间的相关性更高,土壤全铁与母岩年龄间没有相关性。土壤CEC随母岩年龄增加而降低,土壤IEP呈相反变化趋势。进一步对2个地区土壤CEC和IEP与岩石年龄进行分析表明,空间因素对这2个地区土壤性质的影响更为明显,尤其对IEP。  相似文献   

18.
Limited information is available on the changes of surface chemical properties of tropical soils with time during the pedogenesis. Soil samples of three profiles derived from basalts of 10, 1330 and 2290 kilo annum (ka) in age were collected from adjacent locations in a tropical region of Hainan Province, China. The changes in soil surface chemical properties and the mineralogy of the soil clay fraction with time were investigated using ion adsorption, micro-electrophoresis, and X-ray diffraction analysis. The content of 2:1-type clay minerals decreased, while those of kaolinite and gibbsite increased with increasing basalt age and degree of soil development. The content of pedogenic free iron (Fe) oxides and the ratio of free Fe oxides/total Fe oxides increased with soil development stage, while soil poorly crystalline Fe and aluminum (Al) oxides had an opposite trend. The positive surface charge of the soils increased with increasing basalt age and degree of soil development; this was consistent with the change in their contents of free Fe/Al oxides. However, the value of negative surface charge had an opposite behavior. The soil derived from 10-ka-basalt had much more negative charge than soils derived from 1330- and 2290-ka-basalt. Soil net surface charge and zeta potential of the soil clay-fraction decreased with the increase in basalt age. Both net charge–pH curves and zeta potential–pH curves shifted to positive values with increased basalt age and degree of soil development. Increasing age also elevated the point of zero net charge of the soil and the isoelectric point of soil colloids.  相似文献   

19.
On average, crops require about 30 kg ha−1 y−1 of P in humid regions. in some regions fertilizer and manure are applied in amounts that exceed this. the surplus of P in agricultural areas is about 20-45 kg ha−1 y−1. This implies an accumulation of P. the surplus of P estimated from the balance of agricultural soils of industrialized countries in Europe in the last four decades is between 800 and more than 1500 kg ha−1 although this distribution is not even. Phosphorus accumulation is more than one order of magnitude higher than average in areas with intensive livestock farming. Consequently, The application of high levels of manure exceed the capacity of the soil to store P. This implies that P saturation May, pose a problem. Indeed, about half of the Dutch sandy soils (approximately 300 000 ha) are currently considered to be saturated with P, meaning that there is a hazard of P leaching to groundwaters in the future. Assuming current phosphate application rates, phosphate leaching is a distinct possibility over a period of decades to a century. Vulnerable areas are soils with high inputs, low sorption capacities for P, high water-tables and a low retention time for water. the possible consequence is a time-delayed increase of eutrophication of surface waters (lakes, rivers and the sea) caused by a diffuse load of P in the few next decades. Modelling the influence of different agricultural strategies shows that accumulation of P would not increase further only if the use of P increases by an amount that compensates for the increased inputs. It is proposed to change the current support system of agriculture by installing a system of financial incentives and taxes which seek to promote nutrient balances for each farm.  相似文献   

20.

Purpose  

The aim of our study was to characterise the heterogeneity of sediment distribution in a stormwater retention/infiltration basin (Pont de Cheviré, Nantes, France) and to determine the impact of this distribution on water transfer properties in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号