首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A prospective longitudinal study was performed on three cages at each of three Norwegian Atlantic salmon seawater sites that experienced outbreaks of pancreas disease (PD). Once salmonid alphavirus (SAV) ribonucleic acid (RNA) was detected by real‐time RT‐PCR (Rt RT‐PCR) at a site, it became detected in all studied cages and was persistently found until the end of the study period up to 19 months after first detection. SAV‐specific antibodies were detected at all sites until the end of the study period and were also found at a high prevalence in broodfish at the time of stripping. No evidence of increased viral activity was detected in these broodfish. One site tested negative over several months prior to the first detection of SAV by Rt RT‐PCR and SAV‐specific antibody, which occurred 1 month prior to clinical manifestations of PD. Moribund fish or thin fish/runts that were sampled after the first PD diagnosis had almost twice the risk of testing positive by one or more diagnostic tests compared to that of randomly selected apparently healthy individuals. This paper describes the first detailed investigation of the disease development of PD at site and cage level in Norway, as well as an assessment of the performance and agreement of the commonly used diagnostic tests.  相似文献   

2.
Salmonid alphavirus (SAV) causes pancreas disease (PD) in farmed Atlantic salmon (Salmo salar L.), and exocrine pancreas tissue is a primary target of the virus. Digestive enzymes secreted by the exocrine pancreas break down macromolecules in feed into smaller molecules that can be absorbed. The effect of SAV infection on digestion has been poorly studied. In this study, longitudinal observations of PD outbreaks caused by SAV subtype 2 (SAV2) in Atlantic salmon at two commercial sea sites were performed. The development of PD was assessed by measurement of SAV2 RNA load and evaluation of histopathological lesions typical of PD. Reduced digestion of both protein and fat co‐varied with the severity of PD lesions and viral load. Also, the study found that during a PD outbreak, the pen population comprise several subpopulations, with different likelihoods of being sampled. The body length of sampled fish deviated from the expected increase or steady state over time, and the infection status in sampled fish deviated from the expected course of infection in the population. Both conditions indicate that disease status of the individual fish influenced the likelihood of being sampled, which may cause sampling bias in population studies.  相似文献   

3.
Pancreas disease (PD) caused by salmonid alphavirus (SAV) has a significant negative economic impact in the salmonid fish farming industry in northern Europe. Until recently, only SAV subtype 3 was present in Norwegian fish farms. However, in 2011, a marine SAV 2 subtype was detected in a fish farm outside the PD‐endemic zone. This subtype has spread rapidly among fish farms in mid‐Norway. The PD mortality in several farms has been lower than expected, although high mortality has also been reported. In this situation, the industry and the authorities needed scientific‐based information about the virulence of the marine SAV 2 strain in Norway to decide how to handle this new situation. Atlantic salmon post‐smolts were experimentally infected with SAV 2 and SAV 3 strains from six different PD cases in Norway. SAV 3‐infected fish showed higher mortality than SAV 2‐infected fish. Among the SAV 3 isolates, two isolates gave higher mortality than the third one. At the end of the experiment, fish in all SAV‐infected groups had significantly lower weight than the uninfected control fish. This is the first published paper on PD to document that waterborne infection produced significantly higher mortality than intraperitoneal injection.  相似文献   

4.
Pancreas disease (PD), caused by salmonid alphavirus subtype 3 (SAV3), emerged in Norwegian aquaculture in the 1980s and is now endemic along the south‐western coast. In 2011, the first cases of PD caused by marine salmonid alphavirus subtype 2 (SAV2) were reported. This subtype has spread rapidly among the fish farms outside the PD‐endemic zone and is responsible for disease outbreaks at an increasing numbers of sites. To describe the geographical distribution of salmonid alphavirus (SAV), and to assess the time and site of introduction of marine SAV2 to Norway, an extensive genetic characterization including more than 200 SAV‐positive samples from 157 Norwegian marine production sites collected from May 2007 to December 2012 was executed. The first samples positive for marine SAV2 originated from Romsdal, in June 2010. Sequence analysis of the E2 gene revealed that all marine SAV2 included in this study were nearly identical, suggesting a single introduction into Norwegian aquaculture. Further, this study provides evidence of a separate geographical distribution of two subtypes in Norway. SAV3 is present in south‐western Norway, and marine SAV2 circulates in north‐western and Mid‐Norway, a geographical area which since 2010 constitutes the endemic zone for marine SAV2.  相似文献   

5.
Pancreas disease (PD) is an important cause of losses in farmed salmonids in Norway, the United Kingdom and Ireland. As the spread of salmonid alphavirus (SAV), the causal agent, to naïve populations is of major concern to the farming industry, it is important to uncover the transmission routes of the virus. This study was conducted to investigate the potential for vertical transmission of SAV subtype 3. Progeny of broodstock with signs of late‐stage PD and persistent RT‐PCR signals for SAV were followed from fertilization to smoltification in an experimental facility. Fertilized ova were either not disinfected or taken through one of three different disinfection regimes. Also, ova and milt from uninfected broodfish from a different population were exposed to a cell‐cultured strain of SAV 3 immediately before fertilization to simulate a viraemic phase in parent fish. A group of uninfected controls were also included in the study. Fertilized ova from bath exposed and negative control groups were double disinfected. Following fertilization, experimental fish went through a normal freshwater phase. However, fry were stressed at first feeding to enhance replication of possibly latent virus. Smoltification was induced by an artificial light regime, and experimental fish were followed to the late smoltification phase. Selected samples were investigated by real‐time RT‐PCR for SAV, by histology for evidence of PD and by serology for neutralising antibodies against SAV. All analysed samples of progeny were negative. This result shows that SAV 3 is not readily transmitted vertically from parents to offspring. Additional negative PCR results from salmon sampled in commercial hatcheries support these findings. Also, recent studies have shown that risk factors for the horizontal transmission route explain the vast majority of PD outbreaks in Norway. It is concluded that if it happens at all, vertical transmission is of minor importance in the spread of SAV 3.  相似文献   

6.
Heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus (PRV) and pancreas disease (PD) caused by salmonid alphavirus (SAV) are among the most prevalent viral diseases of Atlantic salmon farmed in Norway. There are limited data about the impact of disease in farmed salmon on wild salmon populations. Therefore, the prevalence of PRV and SAV in returning salmon caught in six sea sites was determined using real‐time RT‐PCR analyses. Of 419 salmon tested, 15.8% tested positive for PRV, while none were positive for SAV. However, scale reading revealed that 10% of the salmon had escaped from farms. The prevalence of PRV in wild salmon (8%) was significantly lower than in farm escapees (86%), and increased with fish length (proxy for age). Sequencing of the S1 gene of PRV from 39 infected fish revealed a mix of genotypes. The observed increase in PRV prevalence with fish age and the lack of phylogeographic structure of the virus could be explained by virus transmission in the feeding areas. Our results highlight the need for studies about the prevalence of PRV and other pathogens in Atlantic salmon in its oceanic phase.  相似文献   

7.
The present paper describes, for the first time, clinical signs and pathological findings of pancreas disease (PD) in farmed Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), in sea water in Norway. Similarities and differences with reports of PD from Ireland and Scotland are discussed. Samples of 68 rainbow trout from disease outbreaks on 14 farms and from 155 Atlantic salmon from outbreaks on 20 farms collected from 1996 to 2004 were included in the present study. The histopathological findings of PD in Atlantic salmon and rainbow trout in sea water were similar. Acute PD, characterized by acute necrosis of exocrine pancreatic tissues, was detected in nine Atlantic salmon and three rainbow trout. Salmonid alphavirus (SAV) was identified in acute pancreatic necroses by immunohistochemistry. Most fish showed severe loss of exocrine pancreatic tissue combined with chronic myositis. Myocarditis was often but not consistently found. Kidneys from 40% and 64% of the rainbow trout and Atlantic salmon, respectively, had cells along the sinusoids that were packed with cytoplasmic eosinophilic granules. These cells resembled hypertrophied endothelial cells or elongated mast cell analogues. Histochemical staining properties and electron microscopy of these cells are presented. SAV was identified by RT-PCR and neutralizing antibodies against SAV were detected in blood samples.  相似文献   

8.
Viral diseases represent serious challenge in marine farming of Atlantic salmon (Salmo salar L). Pancreas disease (PD) caused by a salmonid alphavirus (SAV) is by far the most serious in northern Europe. To control PD, it is necessary to identify virus transmission routes. One aspect to consider is whether the virus is transported as free particles or associated with potential vectors. Farmed salmonids have high lipid content in their tissue which may be released into the environment from decomposing dead fish. At the seawater surface, the effects of wind and ocean currents are most prominent. The aim of this study was primarily to identify whether the lipid fraction leaking from dead infected salmon contains SAV. Adipose tissue from dead SAV‐infected fish from three farming sites was submerged in beakers with sea water in the laboratory and stored at different temperature and time conditions. SAV was identified by real‐time RT‐PCR in the lipid fractions accumulating at the water surface in the beakers. SAV‐RNA was also present in the sea water. Lipid fractions were transferred to cell culture, and viable SAV was identified. Due to its hydrophobic nature, fat with infective pathogenic virus at the surface may contribute to long‐distance transmission of SAV.  相似文献   

9.
This work reports the effect of two DNA vaccines against salmonid alphavirus 3 (SAV3) in Atlantic salmon. Presmolts were vaccinated by intramuscular injection of plasmids encoding the SAV3 structural polyprotein C‐E3‐E2‐6K‐E2 (pCSP), E2 only (pE2), or plasmid without insert (pcDNA3.3). E2 is expressed at the surface of cells transfected with pCSP and internally in cells transfected with pE2. A commercial vaccine based on inactivated SAV (NCPD) was used for comparison. At 10 weeks post‐vaccination, only fish vaccinated with pCSP showed antibody against E2 and virus‐neutralizing activity. Vaccinated fish were infected with SAV3 to determine protection by virus quantitation in serum after 7 days and scoring of pathological changes after 21 days. Fish vaccinated with both pCSP and NCPD vaccines showed significant virus reduction in serum, while fish vaccinated with pE2 did not. All fish vaccinated with pcDNA3.3 and pE2 showed pathological changes in organs typical of PD, 60% of fish vaccinated with NCPD showed PD pathology, while fish vaccinated with pCSP did not show PD pathology. Taken together, DNA vaccination with pCSP provided strong protection for salmon against SAV3 infection, which in part may be due to production of virus‐neutralizing antibodies.  相似文献   

10.
Sequence data from salmonid alphavirus (SAV) strains obtained from farmed marine Atlantic salmon, Salmo salar L. , over a 20-year period between 1991 and 2011 was reviewed to examine the geographical distribution of the genetically defined SAV subtypes in twelve regions across Ireland and Scotland. Of 160 different Atlantic salmon SAV strains examined, 62 belonged to subtype 1, 28 to subtype 2, 34 to subtype 4, 35 to subtype 5 and 1 to subtype 6. SAV subtypes 1, 4 and 6 were found in Ireland, while subtypes 1, 2, 4 and 5 were found in Scotland. In the majority of regions, there was a clear clustering of subtypes, with SAV subtype 1 being the dominant subtype in Ireland overall, as well as in Argyll and Bute in Scotland. SAV subtype 2 predominated in the Shetland and Orkney Islands. The emergence in Atlantic salmon of subtype 2 strains typically associated with sleeping disease in rainbow trout in Argyll and Bute, strongly suggesting transmission of infection between these species, was noted for the first time. SAV subtype 4 was the most common subtype found in the southern Western Isles, while SAV subtype 5 predominated in the northern Western Isles and north-west mainland Scotland. No single strain was dominant on sites in the western Highlands, with a number of sites in this region in particular having more than one subtype detected in different submissions. The significance of these results in relation to aspects of the epidemiology of infection, including transmission, biosecurity and wildlife reservoirs are discussed and knowledge gaps identified.  相似文献   

11.
Several different viruses have been associated with myocarditis‐related diseases in the Atlantic salmon aquaculture industry. In this study, we investigated the presence of PMCV, SAV, PRV and the recently identified Atlantic salmon calicivirus (ASCV), alone and as co‐infections in farmed Atlantic salmon displaying myocarditis. The analyses were performed at the individual level and comprised qPCR and histopathological examination of 397 salmon from 25 farms along the Norwegian coast. The samples were collected in 2009 and 2010, 5–22 months post‐sea transfer. The study documented multiple causes of myocarditis and revealed co‐infections including individual fish infected with all four viruses. There was an overall correlation between lesions characteristic of CMS and PD and the presence of PMCV and SAV, respectively. Although PRV was ubiquitously present, high viral loads were with a few exceptions, correlated with lesions characteristic of HSMI. ASCV did not seem to have any impact on myocardial infection by PMCV, SAV or PRV. qPCR indicated a negative correlation between PMCV and SAV viral loads. Co‐infections result in mixed and atypical pathological changes which pose a challenge for disease diagnostic work.  相似文献   

12.
Atlantic salmon with amoebic gill disease (AGD) were treated with chloramine‐T to compare its effectiveness with that of freshwater bathing. In 250‐L tank trials, treatment of seawater with chloramine‐T reduced amoeba density on the gills to levels significantly lower than when treated with seawater alone. There was no further change in amoeba levels in fish bathed for 3 or 6 h compared with 1 h of treatment. Plasma lactate levels in fish bathed in chloramine‐T for 6 h showed no differences across treatments. In 1000‐L tank trials using freshwater alone or seawater with chloramine‐T, significant reductions in amoeba density occurred compared with pre‐bath levels. Histological analysis of gill tissue revealed AGD lesion levels to increase, then to return to pre‐bath levels within 1 week for freshwater‐treated fish, while chloramine‐T‐ and seawater‐treated fish had higher levels of AGD lesions from 2 weeks post bathing. Immunodot‐blot data indicated an initial significant increase in prevalence of lesions in seawater and chloramine‐T‐treated fish, which declined to levels significantly lower than pre‐bath levels by 3 weeks post bathing, compared with the freshwater‐treated fish, which had significantly lower levels than controls by 2 weeks post bathing. At reducing amoeba density, it is apparent that bathing AGD‐affected Atlantic salmon in seawater with chloramine‐T proved at least as effective as freshwater.  相似文献   

13.
Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish.  相似文献   

14.
15.
The first alphavirus to be isolated from fish was recorded in 1995 with the isolation of salmon pancreas disease virus from Atlantic salmon, Salmo salar L., in Ireland. Subsequently, the closely related sleeping disease virus was isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), in France. More recently Norwegian salmonid alphavirus (SAV) has been isolated from marine phase production of Atlantic salmon and rainbow trout in Norway. These three viruses are closely related and are now considered to represent three subtypes of SAV, a new member of the genus Alphavirus within the family Togaviridae. SAVs are recognized as serious pathogens of farmed Atlantic salmon and rainbow trout in Europe. This paper aims to draw together both historical and current knowledge of the diseases caused by SAVs, the viruses, their diagnosis and control, and to discuss the differential diagnosis of similar pathologies seen in cardiomyopathy syndrome and heart and skeletal muscle inflammation of Atlantic salmon.  相似文献   

16.
17.
Pancreas disease (PD) is an economically important disease of European farmed Atlantic salmon. It can cause significant losses because of morbidity, mortality and reduced production. The disease is caused by an alphavirus, known as salmon PD virus (SPDV) or salmonid alphavirus subtype 1 in Ireland. To examine whether it is possible to improve the natural resistance of Atlantic salmon to SPDV by selective breeding, 6000 genotyped, tagged, pedigreed fish from 150 full‐sib families were exposed to a natural challenge during 2005 in a sea cage on a commercial salmon farm in the West of Ireland. Histopathological and serological examination was performed weekly on a proportion of all moribund fish to determine the onset of the infection and the likely cause of death. Heritabilities and genetic correlations are presented for resistance to a natural PD challenge and smolt input weight. The results indicate that the susceptibility of salmon to SPDV could be reduced by selective breeding based on the survival in a natural challenge to the virus.  相似文献   

18.
The effect of fluctuation in water temperature during the freshwater rearing stage on cataract development in Atlantic salmon was investigated. Presmolts were exposed to either constant low or high temperatures, or high temperature with cold-water fluctuations. Temperature fluctuations caused the fastest growth rate and most severe cataracts, whilst low temperature resulted in slow growth and minor cataracts. The fish were then individually marked and maintained together in a seawater net pen for 7 months. Cataract progressed in all groups, fish from the low temperature group showed the fastest subsequent growth, and developed cataracts to the same degree as fish from the other groups. There were no statistically significant differences in selenium-dependent glutathione peroxidase levels in pooled samples of aqueous humour, lens and plasma from fish with or without cataract, except from the last freshwater samples, where cataractous fish showed lower plasma activity. Plasma cortisol and glucose levels did not differ, nor did whole eye riboflavin levels. Higher concentrations of some free amino acids in whole eyes were found in fish with cataract. This study shows that fluctuation in water temperature may cause both increased growth rate and cataract development in Atlantic salmon and that cataract development initiated in the freshwater rearing phase continues after transfers to seawater.  相似文献   

19.
While investigating biomarkers for infection with salmonid alphavirus (SAV), the cause of pancreas disease (PD), a selective precipitation reaction (SPR) has been discovered in serum which could be an on‐farm qualitative test and an in‐laboratory quantitative assay for health assessments in aquaculture. Mixing serum from Atlantic salmon, Salmo salar, with SAV infection with a sodium acetate buffer caused a visible precipitation which does not occur with serum from healthy salmon. Proteomic examination of the precipitate has revealed that the components are a mix of muscle proteins, for example enolase and aldolase, along with serum protein such as serotransferrin and complement C9. The assay has been optimized for molarity, pH, temperature and wavelength so that the precipitation can be measured as the change in optical density at 340 nm (Δ340). Application of the SPR assay to serum samples from a cohabitation trial of SAV infection in salmon showed that the Δ340 in infected fish rose from undetectable to a maximum at 6 weeks post‐infection correlating with histopathological score of pancreas, heart and muscle damage. This test may have a valuable role to play in the diagnostic evaluation of stock health in salmon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号