首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

The fixed-dose combination of butorphanol, azaperone and medetomidine (BAM; 30, 12 and 12 mg mL?1, respectively) with subsequent antagonism by naltrexone–atipamezole was evaluated for reversible immobilization of captive blesbok (Damaliscus pygargus phillipsi).

Study design

Prospective, clinical trial.

Animals

Sixteen blesbok (four males and twelve females), weighing 52.5?71.0 kg, were immobilized in South Africa.

Methods

The total dose of BAM ranged from 0.5 to 0.7 mL for females and 0.7 to 0.9 mL for males. In seven animals chosen randomly, 8000 units of hyaluronidase was added to the dart. Physiologic variables were recorded every 5 minutes beginning at 10?20 minutes after darting. Arterial blood samples were collected three times at 20, 30 and 40 minutes after darting for analysis of blood acid-base status.

Results

The mean administered doses of BAM were as follows: butorphanol (0.34 ± 0.08 mg kg?1), azaperone (0.14 ± 0.03 mg kg?1) and medetomidine (0.14 ± 0.03 mg kg?1). The inductions were calm and smooth. The mean induction time was 9.6 ± 3.2 minutes with just BAM and 5.1 ± 0.8 minutes with BAM and hyaluronidase combination. Heart rate (45 ± 6 beats minute?1) and respiratory frequency (38 ± 4 breaths minute?1) were stable throughout immobilization. The mean arterial blood pressure for all animals was stable but elevated (137 ± 7 mmHg). Rectal temperature slightly increased over time but remained within an acceptable range. The recovery time after administering naltrexone and atipamezole was 4.8 ± 0.7 minutes.

Conclusion and clinical relevance

The BAM combination proved to be reliable and effective in blesbok.  相似文献   

2.
ObjectiveTo assess the efficacy of butorphanol–azaperone–medetomidine (BAM) and butorphanol–midazolam–medetomidine (BMM) protocols for immobilization of wild common palm civets (Paradoxurus musangus) with subsequent antagonization with atipamezole.Study designProspective, randomized, blinded clinical trial.AnimalsA total of 40 adult wild common palm civets, 24 female and 16 male, weighing 1.5–3.4 kg.MethodsThe civets were randomly assigned for anesthesia with butorphanol, azaperone and medetomidine (0.6, 0.6 and 0.2 mg kg–1, respectively; group BAM) or with butorphanol, midazolam and medetomidine (0.3, 0.4 and 0.1 mg kg–1, respectively; group BMM) intramuscularly (IM) in a squeeze cage. When adequately relaxed, the trachea was intubated for oxygen administration. Physiological variables were recorded every 5 minutes after intubation. Following morphometric measurements, sampling, microchipping and parasite treatment, medetomidine was reversed with atipamezole at 1.0 or 0.5 mg kg–1 IM to groups BAM and BMM, respectively. Physiological variables and times to reach the different stages of anesthesia were compared between groups.ResultsOnset time of sedation and recumbency was similar in both groups; time to achieve complete relaxation and tracheal intubation was longer in group BAM. Supplementation with isoflurane was required to enable intubation in five civets in group BAM and one civet in group BMM. All civets in group BAM required topical lidocaine to facilitate intubation. End-tidal carbon dioxide partial pressure was lower in group BAM, but heart rate, respiratory rate, rectal temperature, peripheral hemoglobin oxygen saturation and mean arterial blood pressure were not different. All civets in both groups recovered well following administration of atipamezole.Conclusions and clinical relevanceBoth BAM and BMM combinations were effective for immobilizing wild common palm civets. The BMM combination had the advantage of producing complete relaxation that allowed intubation more rapidly.  相似文献   

3.
4.

Objective

The butorphanol-azaperone-medetomidine fixed-dose combination (BAM, respectively, 30-12-12 mg mL?1) with subsequent antagonism by naltrexone-atipamezole was evaluated for reversible immobilization of captive cheetahs (Acinonyx jubatus).

Study design

Prospective, clinical trial.

Animals

Twelve cheetahs (six males and six females, weighing 37–57 kg) housed in enclosures, were immobilized at Hoedspruit Endangered Species Centre in the Republic of South Africa.

Methods

BAM volume dose rate was 0.009–0.014 mL kg?1 (mean ± standard deviation 0.010 ± 0.001 mL kg?1). Total dose in all animals was 0.5 mL. The actual doses were as follows: butorphanol (0.29 ± 0.04 mg kg?1), azaperone (0.12 ± 0.01 mg kg?1) and medetomidine (0.12 ± 0.01 mg kg?1). Physiologic variables and quality of immobilization were recorded every 5 minutes beginning at 15–20 minutes after darting. Arterial blood samples were collected three times at 20, 30 and 40 minutes after darting from all animals for analysis of blood oxygenation and acid-base status.

Results

The inductions were calm and smooth and mean induction time was 4.0 ± 1.1 minutes. Heart rate (50 ± 9 beats minute?1) and respiratory frequency (20 ± 3 breaths minute?1) were stable throughout immobilization. The recovery time after reversing with naltrexone and atipamezole was 9.1 ± 3.6 minutes.

Conclusions

and clinical relevance BAM proved to be a reliable and cardiovascular stable drug combination for immobilization of cheetahs.  相似文献   

5.
6.
ObjectiveTo compare ketamine–butorphanol–medetomidine (KBM) with butorphanol–midazolam–medetomidine (BMM) immobilization of serval.Study designBlinded, randomized trial.AnimalsA total of 23 captures [KBM: five females, six males; 10.7 kg (mean); BMM: 10 females, two males; 9.6 kg].MethodsServal were cage trapped and immobilized using the assigned drug combination delivered via a blow dart into gluteal muscles. Prior to darting, a stress score was assigned (0: calm; to 3: markedly stressed). Drug combinations were dosed based on estimated body weights: 8.0, 0.4 and 0.08 mg kg–1 for KBM and 0.4, 0.3 and 0.08 mg kg–1 for BMM, respectively. Time to first handling, duration of anaesthesia and recovery times were recorded. Physiological variables including blood glucose and body temperature were recorded at 5 minute intervals. Atipamezole (5 mg mg–1 medetomidine) and naltrexone (2 mg mg–1 butorphanol) were administered intramuscularly prior to recovery. Data, presented as mean values, were analysed using general linear mixed model and Spearman’s correlation (stress score, glucose, temperature); significance was p < 0.05.ResultsDoses based on actual body weights were 8.7, 0.4 and 0.09 mg kg–1 for KBM and 0.5, 0.4 and 0.09 mg kg–1 for BMM, respectively. Time to first handling was 10.2 and 13.3 minutes for KBM and BMM, respectively (p = 0.033). Both combinations provided cardiovascular stability during anaesthesia that lasted a minimum of 35 minutes. Recovery was rapid and calm overall, but ataxia was noted in KBM. Stress score was strongly correlated to blood glucose (r2 = 0.788; p = 0.001) and temperature (r2 = 0.634; p = 0.015).Conclusions and clinical relevanceBoth combinations produced similar effective immobilization that was cardiovascularly stable in serval. Overall, BMM is recommended because it is fully antagonizable. A calm, quiet environment before drug administration is essential to avoid capture-induced hyperglycaemia and hyperthermia.  相似文献   

7.
ObjectiveTo evaluate the effects and utility of tiletamine–zolazepam–medetomidine (TZM) and ketamine–medetomidine (KM) for anesthesia of Amur leopard cats (Prionailurus bengalensis euptailurus).Study designProspective, randomized experimental trial.AnimalsA total of six female (3.70 ± 0.49 kg) and six male (5.03 ± 0.44 kg; mean ± standard deviation) Amur leopard cats aged 2–6 years.MethodsEach animal was administered four protocols separated by ≥3 weeks. Each protocol included medetomidine (0.05 mg kg–1) combined with tiletamine–zolazepam (1 mg kg–1; protocol MTZLO); tiletamine–zolazepam (2 mg kg–1; protocol MTZHI); ketamine (2 mg kg–1; protocol MKLO); or ketamine (4 mg kg–1; MKHI) administered intramuscularly. At time 0 (onset of lateral recumbency) and 30 minutes, heart rate (HR), respiratory rate (fR), rectal temperature, noninvasive mean arterial pressure (MAP) and hemoglobin oxygen saturation (SpO2) were recorded. Times to onset of lateral recumbency, duration of anesthesia and time to standing were recorded.ResultsOverall, animals were anesthetized with all protocols within 10 minutes, anesthesia was maintained ≥57 minutes, and recovery (time from the first head lift to standing) was completed within 5 minutes. During anesthesia with all protocols, HR, fR, rectal temperature, SpO2 and MAP were 99–125 beats minute–1, 33–44 breaths minute–1, 37.6–39.4 °C, 90–95% and 152–177 mmHg, respectively. No adverse event was observed.Conclusions and clinical relevanceTZM and KM at various dosages resulted in rapid onset of anesthesia, duration of >57 minutes and rapid recovery without administration of an antagonist. Accordingly, all these combinations are useful for anesthetizing Amur leopard cats and for performing simple procedures. However, the low doses of the anesthetic agents are recommended because there was no difference in duration of anesthesia between the dose rates studied.  相似文献   

8.
ObjectiveTo compare cardiovascular and ventilatory effects, immobilization quality and effects on tissue perfusion of a medetomidine–ketamine–midazolam combination with or without vatinoxan (MK-467), a peripherally acting α2-adrenoceptor antagonist.Study designRandomized, blinded, crossover study.AnimalsA group of nine healthy Patagonian maras (Dolichotis patagonum).MethodsMaras were immobilized twice with: 1) medetomidine hydrochloride (0.1 mg kg–1) + ketamine (5 mg kg–1) + midazolam (0.1 mg kg–1) (MKM) + saline or 2) MKM + vatinoxan hydrochloride (0.8 mg kg–1), administered intramuscularly. Drugs were mixed in the same syringe. At 20, 30 and 40 minutes after injection, invasive blood pressure, heart rate, respiration rate, end-tidal CO2, haemoglobin oxygen saturation, and muscle oxygenation were measured, arteriovenous oxygen content difference was calculated. Muscle tone, jaw tone, spontaneous blinking and palpebral reflex were evaluated. Times to initial effect, recumbency, initial arousal and control of the head were recorded. Paired t test, Wilcoxon matched-pairs signed rank test and analysis of variance were used to compare protocols; (p < 0.05).ResultsVatinoxan significantly reduced systolic (p = 0.0002), mean (MAP; p < 0.0001) and diastolic (p < 0.0001) arterial blood pressures between 20 and 40 minutes. MAPs at 30 minutes (mean ± standard deviation) with MKM and MKM + vatinoxan were 105 ± 12 and 71 ± 14 mmHg, respectively. Without vatinoxan, four animals were hypertensive (MAP > 120 mmHg), whereas with vatinoxan, four animals were hypotensive (MAP < 60 mmHg). Muscle and jaw tone were significantly more frequently present with MKM (both p = 0.039). Other measurements did not significantly differ between protocols.Conclusions and clinical relevanceIn Patagonian maras, vatinoxan attenuated the increase in blood pressure induced by medetomidine. Muscle and jaw tone were more frequently present with MKM, indicating that quality of immobilization with vatinoxan was more profound.  相似文献   

9.
ObjectiveTo compare induction times and physiological effects of etorphine–azaperone with etorphine–midazolam immobilization in African buffaloes.Study designRandomized crossover study.AnimalsA group of 10 adult buffalo bulls (mean body weight 353 kg).MethodsEtorphine–azaperone (treatment EA; 0.015 and 0.15 mg kg–1, respectively) and etorphine–midazolam (treatment EM; 0.015 and 0.15 mg kg–1, respectively) were administered once to buffaloes, 1 week apart. Once in sternal recumbency, buffaloes were instrumented and physiological variables recorded at 5 minute intervals, from 5 minutes to 20 minutes. Naltrexone (20 mg mg–1 etorphine dose) was administered intravenously at 40 minutes. Induction (dart placement to recumbency) and recovery (naltrexone administration to standing) times were recorded. Arterial blood samples were analysed at 5 and 20 minutes. Physiological data were compared between treatments using a general linear mixed model and reported as mean ± standard deviation. Time data were compared using Mann-Whitney U test and reported as median (interquartile range) with p ≤ 0.05.ResultsActual drug doses administered for etorphine, azaperone and midazolam were 0.015 ± 0.001, 0.15 ± 0.01 and 0.16 ± 0.02 mg kg–1, respectively. Induction time for treatment EA was 3.3 (3.6) minutes and not different from 3.2 (3.2) minutes for treatment EM. The overall mean arterial blood pressure was significantly lower for treatment EA (102 ± 25 mmHg) than that for treatment EM (163 ± 18 mmHg) (p < 0.001). The PaO2 for treatment EA (37 ± 12 mmHg; 5.0 ± 1.6 kPa) was not different from that for treatment EM (43 ± 8 mmHg; 5.8 ± 1.1 kPa). Recovery time was 0.8 (0.6) minutes for treatment EA and did not differ from 1.1 (0.6) minutes for treatment EM.Conclusions and clinical relevanceTreatment EA was as effective as treatment EM for immobilization in this study. However, systemic arterial hypertension was a concern with treatment EM, and both combinations produced clinically relevant hypoxaemia. Supplemental oxygen administration is recommended with both drug combinations.  相似文献   

10.

Objective

To evaluate whether intratesticular and incisional ropivacaine infiltration produces sufficient intra- and postoperative analgesia for castrating dogs under sedation.

Study design

Randomized, blinded, controlled clinical study.

Animals

Twenty-three healthy dogs weighing 5.8–35.6 kg admitted for castration.

Methods

Dogs were sedated with medetomidine (0.01 mg kg?1), butorphanol (0.2 mg kg?1) and midazolam (0.2 mg kg?1) intramuscularly, and were randomly assigned to group R, 0.2–0.4 mL kg?1 of ropivacaine 0.5%, or group S, an equivalent volume of saline injected intratesticularly and along the incision line. If persistent motion was observed during surgery, sedation was considered to be insufficient and general anaesthesia was induced. Carprofen 2.2 mg kg?1 was administered postoperatively. Pain was evaluated in all dogs before sedation and postoperatively following atipamezole administration at 1, 2, 4, 8 and 24 hours using an interactive visual analogue scale (IVAS; 0–100), the Glasgow composite pain scale-short form (CMPS-SF; 0–24), and a mechanical algometer. Methadone 0.3 mg kg?1 was administered intravenously to dogs if IVAS >30 or CMPS-SF >4.

Results

There was no significant difference between groups for the number of dogs administered general anaesthesia. The time from the beginning of surgery to induction of general anaesthesia was significantly shorter [median (range)] in group S [6 (3–25) minutes] than in group R [56 (36–76) minutes]. At 8 hours IVAS was significantly higher in group S (14 ± 10) than in group R (6 ± 4).

Conclusions and clinical relevance

Intratesticular and incisional ropivacaine infiltration delayed the time to anaesthesia induction, and provided analgesia after castration performed under deep sedation in dogs. Intratesticular local anaesthesia can be an important part of the anaesthetic plan for castration.  相似文献   

11.
ObjectiveTo characterize the effects of a combination protocol of dexmedetomidine–midazolam–ketamine (DMK) administered intramuscularly (IM) in ornate box turtles (Terrapene ornata ornata).Study designProspective experimental trial.AnimalsA total of 16 apparently clinically healthy adult ornate box turtles (eight male, eight female).MethodsEach turtle was treated with dexmedetomidine (0.1 mg kg−1), midazolam (1 mg kg−1) and ketamine (10 mg kg−1) administered IM. Time to first response, time to maximal effect, the plateau phase and time to recovery from reversal administration were recorded. Physiologic variables, muscle tone, reflexes and the ability to perform endotracheal intubation were recorded at 5 minute intervals. Movement in response to an IM injection of 0.1 mL sterile 0.9% NaCl administered in the left pelvic limb, using a 25 gauge needle to a depth of just past the bevel of the needle, was assessed every 15 minutes. Atipamezole (0.5 mg kg−1) IM and flumazenil (0.05 mg kg−1) SC were administered 60 minutes after the initial DMK injections.ResultsThe mean time to first response, time to maximal effect, the plateau phase and time to recovery were 2.1, 14.9, 38.7 and 7.8 minutes, respectively. A respiratory rate was not observed in most turtles. The body temperature significantly increased over time. The palpebral reflex was persistent in 43% of turtles and the tail pinch reflex remained intact in 13% of turtles. All turtles recovered with no observed adverse effects.Conclusions and clinical relevanceIn this study, this DMK protocol administered to ornate box turtles resulted in a rapid-onset, light anesthesia lasting approximately 40 minutes and a smooth recovery with no adverse effects noted.  相似文献   

12.
ObjectiveTo compare the cardiovascular effects of a combination of medetomidine and vatinoxan (MVX) versus medetomidine (MED) alone administered intramuscularly (IM) and to determine whether heart rate (HR) can be used as a surrogate for cardiac output (CO) after the use of medetomidine with or without vatinoxan.Study designA randomized, blinded, experimental, crossover study.AnimalsA group of eight healthy Beagle dogs aged 4.6 (2.3–9.4) years and weighing 12.9 (9–14.7) kg, median (range).MethodsEach dog was injected with 1 mg m–2 medetomidine with or without 20 mg m–2 vatinoxan IM with a washout period of 7 days. Cardiovascular data and arterial and mixed venous blood gas samples were collected at baseline, 5, 10, 15, 20, 35, 45, 60, 90 and 120 minutes after treatment administration. CO was measured at all time points via thermodilution. Differences between treatments, period and sequence were evaluated with repeated measures analysis of covariance and the relationship between HR and CO was assessed with a repeated measures analysis of variance; p values < 0.05 were deemed significant.ResultsThe CO was 47–96% lower after MED than after MVX (p < 0.0001). Increases in systemic, pulmonary arterial and right atrial pressures and oxygen extraction ratio were significantly higher after MED than after MVX (all p < 0.0001). HR was significantly lower after MED and the linear relationship to CO was significant (p < 0.0001).Conclusions and clinical relevanceOverall, MED affected the cardiovascular system more negatively than MVX, and the difference in cardiovascular function between the treatments can be considered clinically relevant. HR was linearly related to CO, and decreases in HR reflected cardiac performance for dogs sedated with medetomidine with or without vatinoxan.  相似文献   

13.
ObjectiveTo characterize and compare two intramuscular drug protocols using alfaxalone and alfaxalone–medetomidine combination for the field immobilization of free-ranging koalas.Study designBlinded, randomized, comparative field study.AnimalsA total of 66 free-ranging koalas from the Mount Lofty Ranges, South Australia.MethodsKoalas were randomly allocated into two groups. Group A animals were given alfaxalone alone at 3.5 mg kg–1. Group AM animals were given alfaxalone 2 mg kg–1 and medetomidine 40 μg kg–1, reversed with atipamezole at 0.16 mg kg–1. Blinded operators recorded heart rate (HR), respiratory rate (fR), cloacal temperature, depth of sedation and times to: first effect, sedation suitable for clinical interventions, first arousal and full recovery. Data were analysed using independent t test, Mann–Whitney U test, chi-square analysis and log-rank test at 5% level of significance.ResultsSuitable immobilization for clinical examination and sample collection was achieved in all animals. In groups A and AM, median time to working depth was 6.5 minutes (range: 3.4–15) and 8.1 minutes (range: 4.3–24) and time to complete recovery was 66 minutes (range: 12–138) and 34 minutes (range: 4–84), respectively, following reversal. Time to first effect was significantly shorter in group A (p = 0.013), whereas time to full arousal was significantly shorter in group AM (p = 0.007) probably due to the administration of atipamezole. Maximum HR was 117 ± 28 beats minute–1 in group A, which was a significant increase from baseline values (p < 0.0001), whereas group AM showed a significant tachypnoea of 67 ± 25 (normal fR 10–15; p < 0.0001).Conclusions and clinical relevanceBoth the protocols produced immobilization, enabling clinical examination and sample collection; however, protocol AM was more suitable for field work due to shorter recovery times.  相似文献   

14.
ObjectiveTo evaluate the clinical and physiologic effects of intramuscular (IM) administration of medetomidine with and without tramadol in dogs.Study designProspective experimental study.AnimalsA group of eight mixed breed dogs of both sexes, aged 1–2 years, weighing 16.0 ± 0.6 kg.MethodsEach dog was studied twice at ≥1 week interval. Medetomidine (5 μg kg–1; treatment M) was administered IM alone or with tramadol (4 mg kg–1; treatment MT). Sedation was scored by a system that included vocalization, posture, appearance, interactive behaviors, resistance to restraint and response to noise. Times from drug administration to ataxia, impaired walking, head drop, sternal and lateral position and standing were recorded. Sedation score, heart rate, respiratory rate, rectal temperature, end-tidal carbon dioxide (Pe′CO2), hemoglobin oxygen saturation and mean noninvasive blood pressure were recorded and compared 15 minutes before and 15, 30 and 45 minutes after drug administration.ResultsDogs administered MT had higher sedation scores than dogs administered M at 30 and 45 minutes after drug administration (p < 0.05). Times to ataxia, impaired walking, head drop and sternal recumbency were not different between the treatments. Time to lateral recumbency was longer in M than in MT (21.1 ± 1.0 versus 17.6 ± 0.7 minutes, respectively; p < 0.05). Time to standing was longer in MT than in M (67.9 ± 1.4 versus 54.5 ± 1.9 minutes, respectively; p < 0.001). Measured physiological variables did not differ between the treatments, with the exception of Pe′CO2, which was higher in MT than in M at all post-treatment evaluation times (p < 0.001).Conclusions and clinical relevanceTramadol combined with medetomidine resulted in greater sedation scores (deeper sedation) than medetomidine alone in dogs, and minimal adverse changes in the physiologic variables were measured.  相似文献   

15.
ObjectiveTo determine the effect of intravenous vatinoxan administration on bradycardia, hypertension and level of anaesthesia induced by medetomidine–tiletamine–zolazepam in red deer (Cervus elaphus).Study design and animalsA total of 10 healthy red deer were included in a randomised, controlled, experimental, crossover study.MethodsDeer were administered a combination of 0.1 mg kg–1 medetomidine hydrochloride and 2.5 mg kg–1 tiletamine–zolazepam intramuscularly, followed by 0.1 mg kg–1 vatinoxan hydrochloride or equivalent volume of saline intravenously (IV) 35 minutes after anaesthetic induction. Heart rate (HR), mean arterial blood pressure (MAP), respiration rate (fR), end-tidal CO2 (Pe′CO2), arterial oxygen saturation (SpO2), rectal temperature (RT) and level of anaesthesia were assessed before saline/vatinoxan administration (baseline) and at intervals for 25 minutes thereafter. Differences within treatments (change from baseline) and between treatments were analysed with linear mixed effect models (p < 0.05).ResultsMaximal (81 ± 10 beats minute–1) HR occurred 90 seconds after vatinoxan injection and remained significantly above baseline (42 ± 4 beats minute–1) for 15 minutes. MAP significantly decreased from baseline (122 ± 10 mmHg) to a minimum MAP of 83 ± 6 mmHg 60 seconds after vatinoxan and remained below baseline until end of anaesthesia. HR remained unchanged from baseline (43 ± 5 beats minute–1) with the saline treatment, whereas MAP decreased significantly (112 ± 16 mmHg) from baseline after 20 minutes. Pe′CO2, fR and SpO2 showed no significant differences between treatments, whereas RT decreased significantly 25 minutes after vatinoxan. Level of anaesthesia was not significantly influenced by vatinoxan.Conclusions and clinical relevanceVatinoxan reversed hypertension and bradycardia induced by medetomidine without causing hypotension or affecting the level of anaesthesia in red deer. However, the effect on HR subsided 15 minutes after vatinoxan IV administration. Vatinoxan has the potential to reduce anaesthetic side effects in non-domestic ruminants immobilised with medetomidine–tiletamine–zolazepam.  相似文献   

16.

Objective

To characterize a propofol–medetomidine-ketamine total intravenous anaesthetic in impala (Aepyceros melampus).

Study design

Prospective clinical study.

Animals

Ten adult female impala.

Materials and methods

Impala were immobilized at 1253 m above sea level with 2.0 mg thiafentanil and 2.2 mg medetomidine via projectile darts. Propofol was given to effect (0.5 mg kg?1 boluses) to allow endotracheal intubation, following which oxygen was supplemented at 2 L minute?1. Anaesthesia was maintained with a constant-rate infusion of medetomidine and ketamine at 5 μg kg?1 hour?1 and 1.5 mg kg?1 hour?1, respectively, and propofol to effect (initially 0.2 mg kg?1 minute?1) for 120 minutes. The propofol infusion was titrated according to reaction to nociceptive stimuli every 15 minutes. Cardiopulmonary parameters were monitored continuously and arterial blood gas samples were analysed intermittently. After 120 minutes' maintenance, the thiafentanil and medetomidine were antagonized using naltrexone (10:1 thiafentanil) and atipamezole (5:1 medetomidine), respectively.

Results

All impala were successfully immobilized. The median dose [interquartile range (IQR)] of propofol required for intubation was 2.7 (1.9–3.3) mg kg?1. The propofol–medetomidine–ketamine combination abolished voluntary movement and ensured anaesthesia for the 120 minute period. Propofol titration showed a generally downward trend. Median (IQR) heart rate [57 (53–61) beats minute?1], respiratory rate [10 (9–12) breaths minute?1] and mean arterial blood pressure [101 (98–106) mmHg] were well maintained. Arterial blood gas analysis indicated hypoxaemia, hyper- capnia and acidaemia. Butorphanol (0.12 mg kg?1) was an essential rescue drug to counteract thiafentanil-induced respiratory depression. All impala regurgitated frequently during the maintenance period. Recovery was calm and rapid in all animals. Median (IQR) time to standing from antagonist administration was 4.4 (3.2–5.6) minutes.

Conclusions and clinical relevance

A propofol–medetomidine–ketamine combination could provide adequate anaesthesia for invasive procedures in impala. The propofol infusion should begin at 0.2 mg kg?1 minute?1 and be titrated to clinical effect. Oxygen supplementation and airway protection with a cuffed endotracheal tube are essential.  相似文献   

17.

Objective

To evaluate the behavior and some cardiopulmonary variables of dexmedetomidine–midazolam or dexmedetomidine–midazolam-butor-phanol in the silver fox (Vulpes vulpes).

Study design

Blinded, randomized design.

Animals

Sixteen adult silver foxes, aged 7–9 months, weighting 6.0–9.2 kg.

Methods

Animals were randomly assigned to dexmedetomidine (50 μg kg?1) and midazolam (0.45 mg kg?1) (group DM) or to dexmedetomidine (30 μg kg?1), midazolam (0.45 mg kg?1) and butorphanol (0.25 mg kg?1) (group DMB), administered intramuscularly. Pulse rate (PR), respiratory rate (fR), noninvasive arterial pressures, oxygen saturation (SpO2), rectal temperature (T) and behavioral scores (posture, sedation, antinociception, jaw relaxation and auditory response) were measured at 5, 10, 20, 30, 40, 50 and 60 minutes after injection. Time from drug injection to recumbency with no response to stimuli (IT) and time from administration of atipamezole (0.2 mg kg?1) to standing with coordination (RT) were recorded. The occurrences of adverse events were recorded. Data were analyzed by two-tailed unpaired t-tests and Bonferroni post hoc tests. Significant differences were accepted at p<0.05.

Results

There were no statistically significant differences between the groups for IT or RT. Arterial pressures were higher in DMB at each time point except at 5 minutes. PR was lower in DM at each time point except at 10 and 60 minutes. No significant difference was found between the groups for fR, SpO2 and T. The behavioral scores were significantly lower (lower quality immobilization) in DMB at 5,10 and 60 minutes.

Conclusions and clinical relevance

IT and RT were not different between the groups. Both protocols provided immobilization for 30–40 minutes with excellent muscle relaxation and analgesia adequate for clinical examinations and some simple surgical procedures.  相似文献   

18.

Objective

The aim was to compare efficacy and side effects of induction with medetomidine–ketamine or medetomidine–S(+)-ketamine by intranasal (IN) instillation in rabbits and to evaluate both protocols during subsequent isoflurane anaesthesia.

Study design

Prospective, blinded, randomized experimental study in two centres.

Animals

Eighty-three healthy New Zealand White rabbits undergoing tibial or ulnar osteotomy.

Methods

Medetomidine (0.2 mg kg?1) with 10 mg kg?1 ketamine (MK) or 5 mg kg?1 S(+)-ketamine (MS) was administered IN to each rabbit in a randomized fashion. In Centre 1 (n = 42) rabbits were held in sternal recumbency, and in Centre 2 (n = 41) in dorsal recumbency, during drug instillation. Adverse reactions were recorded. If a rabbit swallowed during endotracheal intubation, half of the initial IN dose was repeated and intubation was re-attempted after 5 minutes. Anaesthesia was maintained with isoflurane. Heart rate, blood pressure, endtidal carbon dioxide concentration and blood gases were recorded. Data were analysed using Student's t-test, Mann–Whitney test and Fisher's exact test.

Results

In all, 39 animals were assigned to the MK group and 44 to the MS group. Two rabbits in the MS group held in dorsal recumbency died after instillation of the drug. Eight (MK) and 11 rabbits (MS) were insufficiently anaesthetized and received a second IN dose. One rabbit in MK and three in MS required an isoflurane mask induction after the second IN dose. There were no significant differences between treatments for induction, intraoperative data, blood gas values and recovery data.

Conclusion and clinical relevance

This study indicated that medetomidine–ketamine and medetomidine-S(+)-ketamine were effective shortly after IN delivery, but in dorsal recumbency IN administration of S(+)-ketamine led to two fatalities. Nasal haemorrhage was noted in both cases; however, the factors leading to death have not been fully elucidated.  相似文献   

19.
ObjectiveTo evaluate the immobilization quality and cardiopulmonary effects of etorphine alone compared with etorphine–azaperone in blesbok (Damaliscus pygargus phillipsi).Study designBlinded, randomized, crossover design.AnimalsA total of 12 boma-habituated female blesbok weighing [mean ± standard deviation (SD)] 57.5 ± 2.5 kg.MethodsEach animal was administered etorphine (0.09 mg kg–1) or etorphine–azaperone (0.09 mg kg–1; 0.35 mg kg–1) intramuscularly with 1-week intertreatment washout period. Time to first sign of altered state of consciousness and immobilization time were recorded. Physiological variables were recorded, arterial blood samples were taken during a 40-minute immobilization period, and naltrexone (mean ± SD: 1.83 ± 0.06 mg kg–1) was intravenously administered. Recovery times were documented, and induction, immobilization and recovery were subjectively scored. Statistical analyses were performed; p < 0.05 was significant.ResultsNo difference was observed in time to first sign, immobilization time and recovery times between treatments. Time to head up was longer with etorphine–azaperone (0.5 ± 0.2 versus 0.4 ± 0.2 minutes; p = 0.015). Etorphine caused higher arterial blood pressures (mean: 131 ± 17 versus 110 ± 11 mmHg, p < 0.0001), pH, rectal temperature and arterial oxygen partial pressure (59.2 ± 7.7 versus 42.2 ± 9.8 mmHg), but lower heart (p = 0.002) and respiratory rates (p = 0.01). Etorphine–azaperone combination led to greater impairment of ventilatory function, with higher end-tidal carbon dioxide (p < 0.0001) and arterial partial pressure of carbon dioxide (58.0 ± 4.5 versus 48.1 ± 5.1 mmHg). Immobilization quality was greater with etorphine-azaperone than with etorphine alone (median scores: 4 versus 3; p < 0.0001).Conclusions and clinical relevanceBoth treatments provided satisfactory immobilization of blesbok; however, in addition to a deeper level of immobilization, etorphine–azaperone caused greater ventilatory impairment. Oxygen supplementation is recommended with both treatments.  相似文献   

20.
ObjectivesTo characterize the cardiopulmonary and anesthetic effects of alfaxalone at three dose rates in comparison with a ketamine–dexmedetomidine–midazolam–tramadol combination (KDMT) for immobilization of golden-headed lion tamarins (GHLTs) (Leontopithecus chrysomelas) undergoing vasectomy.Study designProspective clinical trial.AnimalsA total of 19 healthy, male, wild-caught GHLTs.MethodsTamarins were administered alfaxalone intramuscularly (IM) at 6, 12 or 15 mg kg–1, or KDMT, ketamine (15 mg kg–1), dexmedetomidine (0.015 mg kg–1), midazolam (0.5 mg kg–1) and tramadol (4 mg kg–1) IM. Immediately after immobilization, lidocaine (8 mg kg–1) was infiltrated subcutaneously (SC) at the incision site in all animals. Physiologic variables, anesthetic depth and quality of immobilization were assessed. At the end of the procedure, atipamezole (0.15 mg kg–1) was administered IM to group KDMT and tramadol (4 mg kg–1) SC to the other groups; all animals were injected with ketoprofen (2 mg kg–1) SC.ResultsA dose-dependent increase in sedation, muscle relaxation and immobilization time was noted in the alfaxalone groups. Despite the administration of atipamezole, the recovery time was longer for KDMT than all other groups. Muscle tremors were noted in some animals during induction and recovery with alfaxalone. No significant differences were observed for cardiovascular variables among the alfaxalone groups, whereas an initial decrease in heart rate and systolic arterial blood pressure was recorded in KDMT, which increased after atipamezole administration.Conclusions and clinical relevanceAlfaxalone dose rates of 12 or 15 mg kg–1 IM with local anesthesia provided good sedation and subjectively adequate pain control for vasectomies in GHLTs. KDMT induced a deeper plane of anesthesia and should be considered for more invasive or painful procedures. All study groups experienced mild to moderate hypothermia and hypoxemia; therefore, the use of more efficient heating devices and oxygen supplementation is strongly recommended when using these protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号