首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 26 毫秒
1.
The intensive use of synthetic herbicides is questioned for many reasons. Bioherbicides, as integrated weed management tools, however, have the potential to offer a number of benefits such as increased target specificity and rapid degradation. Despite the efforts to identify effective bioherbicide agents in laboratory and field, only thirteen bioherbicides are currently available on the market. Since 1980, the number of biopesticides has increased around the world, while the market share of bioherbicides represents less than 10% of all biopesticides. Nevertheless, weed management implemented at the cropping systems scale needs bioherbicides because of legislation to drive weed management away from heavy reliance on chemicals, the global increase in organic agriculture, the need of both organic and conventional agriculture to increase weed control efficiency, concerns about herbicide resistance, and concern from the public about environmental safety of herbicides. Consequently, we review here the existing products on the market and describe their history, mode of action, efficacy and target weeds. This review is unique because we also discuss the role of bioherbicides in integrated weed management: to manage soil weed seedbanks with seed-targeted agents in addition to primary tillage, to increase the efficacy of mechanical weeding because bioherbicides are more effective on seedlings, to increase the suppression effect of crop cultivars by first slowing weed growth, to terminate cover crops particularly in conservation agriculture, and finally to manage herbicide resistant populations.  相似文献   

2.
Tobacco whitefly, Bemisia tabaci is an important polyphagous insect pest which has developed resistance to various insecticides worldwide. Mixtures of insecticides with different modes of action may delay the onset of resistance. Bioassays were performed to investigate the effects of various mixtures of neonicotinoid and insect growth regulator (IGR) insecticides against a susceptible and a resistant strain. The results of the study showed that potentiation ratio (PR) of all neonicotinoids + buprofezin or pyriproxyfen mixtures at 1:1, 10:1 and 20:1 ratios was greater than 1 suggesting synergistic interactions between insecticides. Maximum potentiation occurred at the 1:1 ratio (PR = 1.69–7.56). The PRs for mixture of acetamiprid, thiamethoxam, thiacloprid or nitenpyram with buprofezin or pyriproxyfen at 1:10 and 1:20 ratios were less than 1 indicating antagonistic interactions. Addition of synergists, S, S, S, tri-butyl phosphorotrithioate (DEF) or piperonyl butoxide (PBO) in the insecticide solutions largely overcame the resistance to all tested neonicotinoids, indicating that the resistance was associated with esterases or mono-oxygenases, respectively. Likewise, addition of both DEF and PBO in mixture with neonicotinoids and IGRs also suggested a similar mechanism of resistance in B. tabaci to the tested insecticide groups. The mechanism of synergism between neonicotinoids and IGRs is unclear. Implications of using mixtures to counteract pesticide resistance are discussed. Mixtures of neonicotinoids with buprofezin or pyriproxyfen at a 1:1 ratio could be used to restore the efficacy of these neonicotinoids against B. tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号