首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conventional and zero traffic systems were mole ploughed and effects on soil physical properties were compared. Draught of the plough operating at 550 mm depth was measured while it was winched across plots having a 5-year history of different traffic regimes. Results showed that the draught was reduced by about 18% on non-trafficked compared with conventionally-trafficked soil.

Cone resistance measurements, 1 month before and 3 months after mole ploughing, confirmed that the non-trafficked soil had significantly less strength to a depth of about 400 mm. Bulk density measured at 75 and 175 mm depth 1 month before mole ploughing indicated a similar trend, but clod and bulk densities at 125 mm and 350 mm depth 3 months later, failed to show any consistent differences between treatments.  相似文献   


2.
R.M. Hawke  A.G. Price  R.B. Bryan 《CATENA》2006,65(3):237-246
This paper investigates the influence of rainfall intensity and initial soil water content on changes in the near-surface soil hydraulic conductivity. While numerous papers have examined surface sealing, this paper outlines two important innovations: the design and application of time-domain reflectometry probes with the ability to measure and record soil water content at very short time and length scales; the design and application of stainless steel tensiometers to measure soil water potential at the same, very short, time and length scales. These permit the Richards Equation to be applied and the near-surface hydraulic conductivity computed. An exponential curve was fitted to the temporal changes in hydraulic conductivity, as both a function of water potential or soil water content, with a high degree of fit. As rainfall intensity increased, the degree of scatter about the best-fit line increased, probably due to the ability of high intensity rainfall to disrupt the near-surface soil structure. While utilising deterministic models, such as the Richards Equation, may be appropriate at the column scale there are practical difficulties due to the very small length scale variability in each of the input variables. The experimental results detailed here indicate that even with data at very short time and length scales it is still not possible to utilize the Richards Equation, or at least, it may be difficult to transfer the laboratory results to the field due to the effect of the specific laboratory experimental conditions on the results.  相似文献   

3.
Maintenance and monitoring of soil fertility is a key issue for sustainable forest management. Vital ecosystem processes may be affected by management practices which change the physical, chemical and biological properties of the soil. This study is the first in Europe to use electrical resistivity (ER) as a non-invasive method to rapidly determine forest soil properties in the field in a monitoring purpose. We explored the correlations between ER and forest soil properties on two permanent plots of the French long-term forest ecosystem-monitoring network (International Cooperative Program Forests, Level II). We used ER measurements to determine soil-sampling locations and define sampling design. Soil cores were taken in the A horizon and analysed for pH, bulk density, residual humidity, texture, organic matter content and nutrients. Our results showed high variability within the studied plots, both in ER and analysed soil properties. We found significant correlations between ER and soil properties, notably cation exchange capacity, soil humidity and texture, even though the magnitude of the correlations was modest. Despite these levels of correlations, we were able to assess variations in soil properties without having to chemically analyse numerous samples. The sampling design based on an ER survey allowed us to map basic soil properties with a small number of samples.  相似文献   

4.
为探测土壤表面干缩裂隙的发育情况,该研究以农田土壤表面干缩裂隙作为研究对象,以高密度电阻率法为测量手段,采用耦合层次聚类分析的同步连续线性估计算法(Simultaneous successive linear estimation,SimSLE)反演土壤表面干缩裂隙的形态,结合试验裂隙图像和反演得到的模拟图像,对比分析...  相似文献   

5.
电阻率成像法在土壤水文学研究中的应用及进展   总被引:7,自引:1,他引:6  
缺乏有效的监测技术是制约土壤学和水文学中尺度问题研究的主要瓶颈。近年来,以电阻率成像法为代表的地球物理学方法被引入到非饱和带土壤水文过程的研究中来,为解决尺度问题提供了新的强有力的工具。结合土壤电阻率与土壤特性之间的岩土物理学关系,电阻率成像法可以实现对土壤特性或状态的多尺度无损连续监测。阐述了电阻率成像法的基本过程、特征及其在土壤水文过程研究中的初步应用。同时,深入探讨了电阻率成像法应用于非饱和带水文过程研究中存在的问题和未来的应用潜力。  相似文献   

6.
基于电阻率断层扫描技术的土壤砾石体积含量评估   总被引:5,自引:1,他引:4  
为了对电阻率断层扫描技术应用于土壤中砾石含量的研究进行评估,该文对此应用进行了数值模拟研究。该研究假设石质土壤为由细土和砾石组成的二相介质,采用有线差分法对所建立土壤数值模型进行了电阻率断层扫描模拟,模型中砾石随机分布且相互独立,过程中对砾石尺寸和土壤中水分情况的影响进行了研究。结果表明对已知二相各自电阻率值的石质土壤,其等效电阻率与其中砾石体积含量相关,数值模拟结果与理论预测结果相符合,验证了电阻率断层扫描技术应用土壤中砾石体积含量估计的可适用性,同时指出在土壤较湿润时为该技术的适宜使用条件。该研究为土壤学分类研究及质量评价提供参考和指导。  相似文献   

7.
基于电阻率断层扫描技术探测林地土层厚度   总被引:2,自引:1,他引:2  
土层厚度对林地生产力具有重要影响,是评价林地土壤质量的重要指标。为了对林地土壤的土层厚度进行调查,该文应用电阻率断层扫描技术对林地土壤土层厚度进行了研究,对其可适用性做出评价。通过在野外试验点对土壤电阻率的实地断层扫描,将其结果与实际测定得到的基岩特征电阻率相结合,预测土层厚度,并将预测值和实地基坑开挖数据进行比较。结果表明,研究区土层厚度多在小于2 m的范围内,电阻率断层扫描技术估测结果与实测结果相符(均方根误差为0.2678),初步表明该技术在估算林地土层厚度方面具有良好的适用性。该研究结果为土壤学方面相关研究提供重要手段,也将对土壤质量评价和土地利用等相关工作提供指导。  相似文献   

8.
基于电阻率层析成像技术的农田土壤优先流原位动态监测   总被引:2,自引:2,他引:0  
针对现有观测技术无法原位监测和判别农田土壤优先流类型、发育位置和演化过程的问题,该研究采用电阻率层析成像技术对野外大尺度条件下的NaCl溶液入渗过程进行原位监测,根据不同时刻监测的剖面视电阻率分布对试验区域的土壤结构分布特征进行分析,对优先流通道发育位置、优先流类型和演化过程进行识别,同时对电阻率层析成像技术识别优先流的精度进行研究。结果表明,试验区域的土壤结构性质不均匀,水平方向5.0~10.0 m范围内的土壤较水平方向0~5.0 m范围内的土壤更为密实;入渗过程中在试验区域土壤疏松区水平方向4.0~5.0 m区间中有非均质指流形成;该指流通道在灌入NaCl溶液9~14 min完全形成,在灌入NaCl溶液60 min时完全退化成基质流;幂函数模型可用来建立剖面视电阻率与Cl-浓度之间的关系。研究成果对农田土壤优先流发育位置与演化过程的原位监测与识别以及防治因水和溶质优势入渗而引起的资源浪费、环境污染和工程地质灾害等具有参考价值。  相似文献   

9.
Electrical resistivity survey in soil science: a review   总被引:3,自引:0,他引:3  
Electrical resistivity of the soil can be considered as a proxy for the spatial and temporal variability of many other soil physical properties (i.e. structure, water content, or fluid composition). Because the method is non-destructive and very sensitive, it offers a very attractive tool for describing the subsurface properties without digging. It has been already applied in various contexts like: groundwater exploration, landfill and solute transfer delineation, agronomical management by identifying areas of excessive compaction or soil horizon thickness and bedrock depth, and at least assessing the soil hydrological properties. The surveys, depending on the areas heterogeneities can be performed in one-, two- or three-dimensions and also at different scales resolution from the centimetric scale to the regional scale. In this review, based on many electrical resistivity surveys, we expose the theory and the basic principles of the method, we overview the variation of electrical resistivity as a function of soil properties, we listed the main electrical device to performed one-, two- or three-dimensional surveys, and explain the basic principles of the data interpretation. At least, we discuss the main advantages and limits of the method.  相似文献   

10.
电阻率成像法监测人工梭梭林土壤水分   总被引:1,自引:1,他引:1  
土壤水分是影响干旱半干旱沙区植物生长发育的主要限制因素。快速、准确地监测土壤水分时空动态可为干旱半干旱区植被建设与生态恢复提供科学依据。以乌兰布和沙漠东北部人工梭梭固沙林土壤为研究对象,在林内、外(根际、冠中、冠缘、行间、林外)设置了5条监测样线,分别于一次强降雨后的第2天、第15天、第55天用多电极电阻仪定位测定了土壤电阻率,同步采取土样用烘干法测定了土壤实际含水率,建立了土壤含水率与土壤电阻率之间的相关关系,并对二维剖面土壤水分空间分布特征进行了分析。结果表明:1)土壤含水率与土壤电阻率之间为极显著负相关关系(P0.01),可用幂函数表示。2)5条测线的土壤电阻率在3次监测时均随土层深度增加而减小,而土壤含水量随土层深度增加而增大,根际冠中冠缘行间林外。强降水后的不同时间内,由于受土壤属性、树冠对水分再分配、树干径流、根系吸收水分等影响,二维剖面上土壤水分空间分布格局有明显变化。随着雨后干旱时间的延长,0~51 cm水分含量由于受蒸发、植物吸收利用的影响而明显降低。3)电阻率成像技术在野外能快速准确,长期定位监测土壤水分含量;对地表扰动小,实现了非破坏性测量;保证测定精度的同时,还能提供尺度较大的土壤水分空间分布的详实数据,可高效快速地获取连续的土壤水分分布信息。  相似文献   

11.
Column experiments on phytolith transport were conducted to assess the partial contributions of water percolation and earthworm activity to phytolith transport in loamy and sandy soils. Six intact cores of a loamy sandy Haplic Cambisol and nine cores of a silty loamy Stagnic Luvisol were excavated. With the Luvisol, three treatments were perfomed: a percolation treatment with periodic irrigation, but without earthworms, a percolation and earthworm treatment with periodic irrigation and earthworms (Aporrectodea caliginosa) and a control. The Cambisol cores did not contain earthworms and hence only percolation and control treatments were tested. The phytoliths of common reed (Phragmites australis) were labelled with the fluorescent dye fluorescein isothiocyanate and applied to the soil surface of each core. Except for the control treatment, 3600 mm of water was applied over 6 months. In the Cambisol, the weighted mean transport distance of phytoliths was significantly greater with percolation (2.2 ± 0.1 cm) than in the control (0.9 ± 0.3 cm), indicating that water percolation is a driving mechanism of phytolith transport. In the Luvisol, the difference in mean transport depth between control and percolation treatments (1.0 ± 0.2 and 1.5 ± 0.3 cm) was not significant. The earthworms did not affect the mean transport distance of phytoliths in the Luvisol, but the phytolith concentrations in the leachates were significantly greater and their size distribution did not change with soil depth as observed in the percolation treatment without earthworms. Further studies are required to quantify the effect of earthworms on phytolith transport.  相似文献   

12.
Vegetation growth in semiarid, Mediterranean ecosystems is greatly dependent on moisture availability in the soil, as little precipitation is available during the growing season. Predicting the effects of climate change on vegetation development requires understanding of the exact relation between climate, moisture availability, and plant growth. Accurate moisture measurements in naturally vegetated areas are difficult because of high spatial variability and because of the coarse, shallow soils. In this study, we evaluated the possibilities of using Electrical Resistivity Tomography (ERT) to measure soil moisture availability and plant water use in a Mediterranean natural area. We found that ERT is a useful tool for measuring soil conditions, providing information on the spatial patterns within the soil and reaching depths otherwise inaccessible. In heterogeneous soils, we differentiated between lithological and moisture effects in the measurements using multitemporal data. Absolute calibration to moisture content was sometimes possible, but strongly location dependent. Based on the ERT measurements, we found that although the soils in the study area are shallow and rocky, plant roots penetrate deeply into the fractured and weathered bedrock, and vegetation subtracts water from depths down to 6 m and below. This information is important for understanding the plant–soil relations and modeling vegetation development. We conclude that ERT provides crucial information on soil moisture processes unavailable using any other currently available measurement method.  相似文献   

13.
14.
One of the most significant soil parameters affecting root growth is soil compaction. It is therefore important to be able to determine the presence of compacted layers, their depth, thickness and spatial location without the necessity of digging a large number of holes in the field with either a spade or backhoe. Previous investigations have identified soil compaction by different methods such as: using ground penetrating radar, acoustic systems, vertical and horizontal penetrometers and instrumented wings mounted on the faces of tines. Linking the output from these sensors to global positioning systems would give an indication of the spatial patent variation. The aim of this study was to evaluate the performance of a soil compaction profile sensor in both controlled laboratory and field conditions. The sensor consisted of a series of instrumented flaps; a flap is defined as the sensing element which comprises one half of a pointed leading edge to the leg of a tine to which strain gauges are placed on the rear face of the flap. Studies measured the effect of compaction on the changes in the soil resistance acting upon a flap face in a soil bin laboratory and under field conditions. The results indicated that the sensor was sensitive to differences in soil strength at different depths in soils. A technique was developed to identify the soil compaction resulting from different tyre inflation pressures and loads. The soil compaction profile sensor was tested on a number of fields in south‐eastern England to determine the changes in soil strength below the wheelings of a pea harvester operating at different tyre inflation pressures.  相似文献   

15.
In Belgium, growing silage maize in a monoculture often results in increased soil compaction. The aim of our research was to quantify the effects of this soil compaction on the dry matter (DM) yields and the nitrogen use of silage maize (Zea mays L.). On a sandy loam soil of the experimental site of Ghent University (Belgium), silage maize was grown on plots with traditional soil tillage (T), on artificially compacted plots (C) and on subsoiled plots (S). The artificial compaction, induced by multiple wheel-to-wheel passages with a tractor, increased the soil penetration resistance up to more than 1.5 MPa in the zone of 0–35 cm of soil depth. Subsoiling broke an existing plough pan (at 35–45 cm of soil depth). During the growing season, the release of soil mineral nitrogen by mineralisation was substantially lower on the C plots than on the T and S plots. Silage maize plants on the compacted soil were smaller and flowering was delayed. The induced soil compaction caused a DM yield loss of 2.37 Mg ha−1 (−13.2%) and decreased N uptake by 46.2 kg ha−1 (−23.2%) compared to the T plots. Maize plants on compacted soil had a lower, suboptimal nitrogen content. Compared with the traditional soil tillage that avoided heavy compaction, subsoiling offered no significant benefits for the silage maize crop. It was concluded that avoiding heavy soil compaction in silage maize is a major strategy for maintaining crop yields and for enhancing N use efficiency.  相似文献   

16.
17.
土壤含水量是影响半干旱区农作物生长的重要因素。为了准确测定土壤含水量的变化动态以指导农业高效用水,近年来,利用地球物理测量方法研究高分辨率的水流入渗,已经越来越受到欢迎和重视。本文以陇中半干旱区玉米田为例,通过在土壤表面布置电极,利用高密度电阻率成像法(ERT)对降雨前后土壤二维剖面进行电阻率数据测量,实现对土壤二维剖面电阻率值和含水量监测,解释不同条件下土壤含水量变化的原因,建立陇中半干旱区农田土壤电阻率和含水量之间的相关关系。结果表明:降水入渗使得二维剖面土壤电阻率整体呈明显降低趋势,反演得到的电阻率图像局部电阻值"高-低-高"的变化过程,与一次降水过程前后"干-湿-干"的循环过程一致。土壤含水量实测值与估计值之间有较为显著的线性关系(R2=0.651 8,n=96)。在0~2.0 m深度范围内,总体估计偏差较小,为0.74%;土壤含水率的估计精度较高,为2.64%。0~0.5 m土层(H1)含水量监测探头分布密集,数据采集较为准确,故H1层估计精度略高于0.5~2.0 m层(H2)。相比之前利用实测工具进行野外测量,ERT测量方法精度较高。本文提供了一个高分辨率的土壤结构二维分布与水分运移过程的图像,同时为实现精确和高效的农业用水管理提供一种新途径。  相似文献   

18.
19.
20.
The effects on a number of soil physical and aeration parameters of compaction during spring pre-sowing operations were measured on a clay soil (49% clay). A soil-tyre contact stress of 200 kPa was applied by tractor tyres.
Yield of an oat crop was reduced by 30% as a result of compaction. Total porosity of the soil was reduced by 6% v/v owing to loss of pores > 60 μm, and water retention was increased. The resultant decrease in air-filled porosity greatly reduced gas diffusion and air permeability coefficients of the soil, and, for a time, O2 content of the soil atmosphere was significantly lowered in the compacted treatment. Penetrometer resistance after sowing was 3.5 MPa in the control and 4.5 MPa in the compacted treatment; in the latter, root growth was inhibited until the soil dried and cracked. By the end of June, canopy temperature measurements indicated water stress in the oat crop on compacted soil but not in that on the control.
The results obtained indicated that air permeability, measured in the field, of 1 mm s−1 provides a satisfactory single value below which crop growth is likely to be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号