首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Objective

To evaluate the behavior and some cardiopulmonary variables of dexmedetomidine–midazolam or dexmedetomidine–midazolam-butor-phanol in the silver fox (Vulpes vulpes).

Study design

Blinded, randomized design.

Animals

Sixteen adult silver foxes, aged 7–9 months, weighting 6.0–9.2 kg.

Methods

Animals were randomly assigned to dexmedetomidine (50 μg kg?1) and midazolam (0.45 mg kg?1) (group DM) or to dexmedetomidine (30 μg kg?1), midazolam (0.45 mg kg?1) and butorphanol (0.25 mg kg?1) (group DMB), administered intramuscularly. Pulse rate (PR), respiratory rate (fR), noninvasive arterial pressures, oxygen saturation (SpO2), rectal temperature (T) and behavioral scores (posture, sedation, antinociception, jaw relaxation and auditory response) were measured at 5, 10, 20, 30, 40, 50 and 60 minutes after injection. Time from drug injection to recumbency with no response to stimuli (IT) and time from administration of atipamezole (0.2 mg kg?1) to standing with coordination (RT) were recorded. The occurrences of adverse events were recorded. Data were analyzed by two-tailed unpaired t-tests and Bonferroni post hoc tests. Significant differences were accepted at p<0.05.

Results

There were no statistically significant differences between the groups for IT or RT. Arterial pressures were higher in DMB at each time point except at 5 minutes. PR was lower in DM at each time point except at 10 and 60 minutes. No significant difference was found between the groups for fR, SpO2 and T. The behavioral scores were significantly lower (lower quality immobilization) in DMB at 5,10 and 60 minutes.

Conclusions and clinical relevance

IT and RT were not different between the groups. Both protocols provided immobilization for 30–40 minutes with excellent muscle relaxation and analgesia adequate for clinical examinations and some simple surgical procedures.  相似文献   

3.
4.

Objective

To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects.

Study design

Randomized, placebo-controlled, blinded, crossover.

Animals

A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg.

Methods

A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg?1; DET); methadone (0.2 mg kg?1; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg?1]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal–Wallis (p < 0.05).

Results

Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15–30 minutes, MHD: 30–60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5–15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments.

Conclusions

Methadone (0.2 mg kg?1) potentiated the antinociception produced by detomidine (5 μg kg?1), with minimal sedative effects.

Clinical relevance

Detomidine (5 μg kg?1) with methadone (0.2 mg kg?1) produced antinociception without the adverse effects of higher doses of detomidine.  相似文献   

5.

Objective

To evaluate the onset and duration of hematological changes and the use of Doppler ultrasound (spleen) in dogs sedated with acepromazine or xylazine.

Study design

Clinical study.

Animals

A total of 24 mixed breed dogs aged 1–4 years and weighing 15–25 kg.

Methods

Dogs were randomly distributed into two groups: acepromazine group (AG) which were administered acepromazine (0.05 mg kg?1) intramuscularly and xylazine group (XG) administered xylazine (0.5 mg kg?1) intramuscularly. Sonographic evaluations (morphologic and hemodynamic splenic vascularization) and hematologic tests were performed before drug administration (baseline) and 5, 15, 30, 60, 120, 240, 360, 480 and 720 minutes after drug administration.

Results

A significant reduction occurred in erythrogram variables in AG at 15–720 minutes corresponding with a significant enlargement of the spleen. In XG, a significant reduction was observed in the erythrogram variables at 30–60 minutes without a significant enlargement of the spleen. Hilar diameter did not change over time in either group. Flow alterations were found only in the splenic artery in AG, with a decreased final diastolic velocity observed at 60–120 minutes.

Conclusions

Administration of acepromazine resulted in decreased red blood cell count, hemoglobin, packed cell volume and an increased diameter of the spleen. Xylazine administration resulted in similar hematologic changes but of smaller magnitude and duration and without splenic changes. The absence of significant changes in the Doppler flow parameters of the splenic artery and vein and the hilar diameter suggests that the splenomegaly that was observed in AG was not due to splenic vasodilation. No splenic sequestration occurred after xylazine administration.

Clinical relevance

The results indicate that acepromazine decreases the erythrocyte concentrations by splenic erythrocyte sequestration and concomitant splenomegaly. Xylazine can cause slight hematologic changes, but without splenic changes.  相似文献   

6.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   

7.

Objective

To compare incidence and duration of postinduction apnoea in dogs after premedication with methadone and acepromazine (MA) or methadone and dexmedetomidine (MD) followed by induction with propofol (P) or alfaxalone (A).

Study design

Prospective, randomized clinical trial.

Animals

A total of 32 American Society of Anesthesiologists class I dogs (15 females, 17 males), aged between 4 months and 4 years, weighing between 3 and 46 kg.

Methods

Dogs were randomly allocated to be administered MA+P, MA+A, MD+P or MD+A (methadone 0.5 mg kg?1 and acepromazine 0.05 mg kg?1 or dexmedetomidine 5 μg kg?1). Induction agents were administered intravenously via syringe driver (P at 4 mg kg?1 minute?1 or A at 2 mg kg?1 minute?1) until successful endotracheal intubation and the endotracheal tube connected to a circle system with oxygen flow at 2 L minute?1. Oxygen saturation of haemoglobin (SpO2), end tidal partial pressure of carbon dioxide and respiratory rate were monitored continuously. If apnoea (≥ 30 seconds without breathing) occurred, the duration until first spontaneous breath was measured. If SpO2 decreased below 90% the experiment was stopped and manual ventilation initiated. Data were analysed with general linear models with significance set at p ≤ 0.05.

Results

There was no statistical difference in the incidence (11 of 16 dogs in A groups and 12 of 16 dogs in P groups), or mean ± standard deviation duration (A groups 125 ± 113 seconds, P groups 119 ± 109 seconds) of apnoea. The SpO2 of one dog in the MD+P group decreased below 90% during the apnoeic period.

Conclusions and clinical relevance

Propofol and alfaxalone both cause postinduction apnoea and the incidence and duration of apnoea is not influenced by the use of acepromazine or dexmedetomidine in premedication. Monitoring of respiration is recommended when using these premedication and induction agent combinations.  相似文献   

8.

Objective

To characterize the cardiovascular effects of dexmedetomidine, with or without MK-467, following intravenous (IV) administration in cats.

Study design

Prospective Latin square experimental study.

Animals

Six healthy adult purpose-bred cats.

Methods

Cats were anesthetized with desflurane in oxygen for instrumentation with a carotid artery catheter and a thermodilution catheter in the pulmonary artery. One hour after discontinuation of desflurane, cats were administered dexmedetomidine (25 μg kg–1), MK-467 (600 μg kg–1), or dexmedetomidine (25 μg kg–1) and MK-467 (600 μg kg–1). All treatments were administered IV as a bolus. Cardiovascular variables were measured prior to drug administration and for 8 hours thereafter. Only data from the dexmedetomidine and dexmedetomidine–MK-467 treatments were analyzed.

Results

Dexmedetomidine produced significant decreases in heart rate, cardiac index and right ventricular stroke work index, and significant increases in arterial blood pressure, central venous pressure, pulmonary artery pressure and systemic vascular resistance index. Dexmedetomidine combined with MK-467 resulted in significant but transient decrease in blood pressure and right ventricular stroke work index.

Conclusion and clinical relevance

Following IV co-administration, MK-467 effectively attenuated dexmedetomidine-induced cardiovascular effects in cats. The drug combination resulted in transient reduction in arterial blood pressure, without causing hypotension.  相似文献   

9.

Objective

To evaluate motor and sensory blockade of combining dexmedetomidine with ropivacaine, administered perineurally or systemically, for femoral and sciatic nerve blocks in conscious dogs.

Study design

Randomized, controlled, experimental study.

Animals

Seven healthy Beagle dogs, aged 3.3 ± 0.1 years and weighing 11.0 ± 2.4 kg.

Methods

Dogs were anesthetized with isoflurane on three separate occasions for unilateral femoral and sciatic nerve blocks and were administered the following treatments in random order: perineural ropivacaine 0.75% (0.1 mL kg–1) on each nerve and intramuscular (IM) saline (0.2 mL kg–1) (GCON); perineural dexmedetomidine (1 μg mL–1) and ropivacaine 0.75% (0.1 mL kg–1) on each nerve and IM saline (0.2 mL kg–1) (GDPN); and perineural ropivacaine 0.75% (0.1 mL kg–1) on each nerve and IM dexmedetomidine (1 μg mL–1, 0.2 mL kg–1) (GDIM). Nerve blocks were guided by ultrasound and electrical stimulation and dogs were allowed to recover from general anesthesia. Sensory blockade was evaluated by response to clamp pressure on the skin innervated by the saphenous/ femoral, common fibular and tibial nerves. Motor blockade was evaluated by observing the ability to walk and proprioception. Sensory and motor blockade were evaluated until their full recovery.

Results

No significant differences in onset time to motor and sensory blockade were observed among treatments. Duration of motor blockade was not significantly different among treatments; however, duration of tibial sensory blockade was longer in the GDPN than in the GDIM treatment.

Conclusions and clinical relevance

Although a longer duration of sensory blockade was observed with perineural dexmedetomidine, a significant increase compared with the control group was not established. Other concentrations should be investigated to verify if dexmedetomidine is a useful adjuvant to local anesthetics in peripheral nerve blocks in dogs.  相似文献   

10.

Objective

To compare the effects of two balanced anaesthetic protocols (isoflurane–dexmedetomidine versus medetomidine) on sedation, cardiopulmonary function and recovery in horses.

Study design

Prospective, blinded, randomized clinical study.

Animals

Sixty healthy adult warm blood horses undergoing elective surgery.

Methods

Thirty horses each were sedated with dexmedetomidine 3.5 μg kg?1 (group DEX) or medetomidine 7 μg kg?1 (group MED) intravenously. After assessing and supplementing sedation if necessary, anaesthesia was induced with ketamine/diazepam and maintained with isoflurane in oxygen/air and dexmedetomidine 1.75 μg kg?1 hour?1 or medetomidine 3.5 μg kg?1 hour?1. Ringer's lactate (7–10 mL kg?1 hour?1) and dobutamine were administered to maintain normotension. Controlled mechanical ventilation maintained end-tidal expired carbon dioxide pressures at 40–50 mmHg (5.3–6.7 kPa). Heart rate, invasive arterial blood pressure, inspired and expired gas composition and arterial blood gases were measured. Dexmedetomidine 1 μg kg?1 or medetomidine 2 μg kg?1 was administered for timed and scored recovery phase. Data were analysed using two-way repeated-measures analysis of variance and chi-square test. Significance was considered when p  0.05.

Results

In group DEX, significantly more horses (n = 18) did not fulfil the sedation criteria prior to induction and received one or more supplemental doses, whereas in group MED only two horses needed one additional bolus. Median (range) total sedation doses were dexmedetomidine 4 (4–9) μg kg?1 or medetomidine 7 (7–9) μg kg?1. During general anaesthesia, cardiopulmonary parameters did not differ significantly between groups. Recovery scores in group DEX were significantly better than in group MED.

Conclusions and clinical relevance

Horses administered dexmedetomidine required more than 50% of the medetomidine dose to reach equivalent sedation. During isoflurane anaesthesia, cardiopulmonary function was comparable between the two groups. Recovery scores following dexmedetomidine were better compared to medetomidine.  相似文献   

11.

Objective

To characterize the pharmacokinetics of dexmedetomidine, MK-467 and their combination following intramuscular (IM) administration to cats.

Study design

Prospective randomized crossover experimental study.

Animals

A total of eight healthy adult male castrated cats aged 1–2 years.

Methods

Cats were administered dexmedetomidine (25 μg kg–1) IM (treatment D25IM) or intravenously (IV; treatment D25IV); MK-467 (600 μg kg–1) IM (treatment MK600IM) or IV (treatment MK600IV); or dexmedetomidine (25 μg kg–1) IM with 300, 600 or 1200 μg kg–1 MK-467 IM (treatments D25MK300IM, D25MK600IM and D25MK1200IM). D25MK600IM was the only combination treatment analyzed. Blood samples were obtained prior to drug administration and at various times for 5 hours (D25IV) or 8 hours (all other treatments) thereafter. Plasma dexmedetomidine and MK-467 concentrations were measured using liquid chromatography/mass spectrometry. Compartment models were fitted to the time–concentration data.

Results

A one-compartment model best fitted the time–plasma dexmedetomidine concentration data in cats administered D25IM, and the time–plasma MK-467 concentration data in cats administered MK600IM and D25MK600IM. A two-compartment model best fitted the time–plasma dexmedetomidine concentration data in cats administered D25IV and D25MK600IM, and the time–plasma MK-467 concentration data in cats administered MK600IV. Median (range) area under the time–concentration curve, absorption rate half-life, maximum concentration, time to maximum concentration and terminal half-life for dexmedetomidine in D25IM and D25MK600IM were 1129 (792–1890) and 924 (596–1649) ng minute mL–1, 4.4 (0.4–15.7) and 2.3 (0.2–8.0) minutes, 10.2 (4.8–16.9) and 17.8 (15.8–73.5) ng mL–1, 17.8 (2.6–44.9) and 5.2 (1.2–15.1) minutes and 62 (52–139) and 50 (31–125) minutes, respectively. Rate of absorption but not systemic exposure was significantly influenced by treatment. No significant differences were observed in MK-467 pharmacokinetic parameters in MK600IM and D25MK600IM.

Conclusions and clinical relevance

MK-467 significantly influenced the disposition of dexmedetomidine, whereas dexmedetomidine did not significantly affect the disposition of MK-467 when the drugs were coadministered IM.  相似文献   

12.

Objective

To characterize the pharmacokinetics of dexmedetomidine when administered as a short intravenous (IV) infusion to isoflurane-anesthetized rabbits.

Study design

Experimental study.

Animals

A total of six healthy adult female New Zealand White rabbits.

Methods

Rabbits were anesthetized with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the anesthetic dose was reduced to 0.7 × MAC, and dexmedetomidine hydrochloride (20 μg kg?1) was infused IV over 5 minutes. Arterial blood samples were obtained immediately before and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240 and 360 minutes following termination of the infusion. Samples were transferred into tubes containing ethylenediaminetetraacetic acid and centrifuged immediately. The plasma was harvested and stored at –80 °C until analyzed. Concentrations of dexmedetomidine in plasma were determined by liquid chromatography mass spectrometry. Compartment models were fitted to the time and concentration data using nonlinear regression.

Results

A three-compartment model best fit the data set. Median volume of distribution at steady state and terminal half-life were 3169 mL kg?1 (range, 2182–3859 mL kg?1) and 80 minutes (range, 72–88 minutes), respectively.

Conclusions and clinical relevance

The pharmacokinetics of dexmedetomidine in isoflurane-anesthetized, healthy, New Zealand White rabbits were characterized in this study. Data from this study can be used to determine dosing regimens for dexmedetomidine in isoflurane-anesthetized rabbits.  相似文献   

13.
14.

Objective

To investigate the sedative effects in dogs of tiletamine–zolazepam–acepromazine (TZA) or ketamine–flunitrazepam (KF) administered orally and to evaluate the effectiveness of encapsulated TZA for capturing free-roaming dogs.

Study design

Experimental study followed by a field trial.

Animals

Six research dogs and 27 free-roaming dogs.

Methods

In a pilot study, six research dogs were administered liquid TZA (20 mg kg?1 tiletamine–zolazepam and 2 mg kg?1 acepromazine) or liquid KF (50 mg kg?1 ketamine and 2 mg kg?1 flunitrazepam) orally: treatment 1, forcefully squirting liquid medication into the mouth; treatment 2, encapsulating liquid medication for administration in canned food; treatment 3, administering liquid medication mixed with gravy. Sedation was scored. A follow-up field trial attempted capture of 27 free-roaming dogs.

Results

In the pilot study, the median time (range) to lateral recumbency (% dogs) after TZA administration was: treatment 1, 47.5 (35–80) minutes (67%); treatment 2, 30 (15–65) minutes (83%); and treatment 3, 75 (45–110) minutes (100%). No dogs in KF treatment 2 or 3 achieved lateral recumbency. Based on these results, 20 free-roaming dogs were offered encapsulated TZA in canned food: TZ (20 mg kg?1) and acepromazine (2 mg kg?1). Of these, no further drugs to four dogs (one dog captured), 10 dogs were administered a second dose within 30 minutes (five dogs captured) and six dogs were administered TZ (5 mg kg?1) and xylazine (1.1–2.2 mg kg?1) intramuscularly by blow dart (six dogs captured). Seven dogs were initially offered twice the TZA dose (five dogs captured). In total, 63% free-roaming dogs were captured after administration of encapsulated TZA in canned food.

Conclusions and clinical relevance

Oral administration of encapsulated TZA in canned dog food can aid in the capture of free-roaming dogs, but additional drugs may be required. The sedation onset time and medication palatability influenced the capture rate.  相似文献   

15.

Objective

To determine the effects of brimonidine tartrate ophthalmic solution on sedation, heart rate (HR), respiratory frequency (fR), rectal temperature (RT) and noninvasive mean arterial pressure (MAP) in healthy cats.

Study design

Randomized, blinded crossover study, with 1 week washout between treatments.

Animals

Six healthy purpose-bred cats.

Methods

Brimonidine tartrate ophthalmic solution 0.1% (one or two drops; 58.6 ± 3.3 μg per drop) or a control solution (artificial tear solution) was administered to six healthy cats. Behavioural observations and measurements of HR, fR, RT and MAP were recorded before and at 30, 60, 90, 120, 180, 240, 300 and 360 minutes after topical administration. Behavioural scores were analysed using Friedman’s test for repeated measures to evaluate the time effect in each treatment and treatment effect at each time point. Physiological variables (HR, fR, RT and MAP) were analysed using two-way analysis of variance for repeated measures to evaluate the time and treatment effects. The level of significance was set at p < 0.05.

Results

Dose-dependent behavioural and physiological responses were noted. A dose of two drops of brimonidine resulted in sedation in the cats and decreased HR and MAP. Significant sedative effects occurred between 30 and 120 minutes and for physiological responses up to 360 minutes. The most frequent adverse reaction was vomiting, occurring within 40 minutes in all six cats administered two drops and five of the six cats administered one drop of brimonidine.

Conclusions and clinical relevance

The results demonstrated that ocular administration of brimonidine 0.1% ophthalmic solution induced sedation in cats and some cardiovascular effects usually associated with α2-adrenoceptor agonists. Further studies should be performed to determine clinical applications for this agent in cats.  相似文献   

16.

Objective

To describe the sedative and physiologic effects of two doses of alfaxalone administered intramuscularly in dogs.

Study design

Randomized, blinded, crossover experimental trial.

Animals

Ten adult mixed-breed dogs.

Methods

Dogs were assigned randomly to be administered one of three intramuscular injections [saline 0.1 mL kg?1 (S), alfaxalone 1 mg kg?1 (A1) or alfaxalone 2 mg kg?1 (A2)] on three occasions. Heart rate (HR), respiratory rate (fR) and sedation score were assessed before injection (T0) and at 5 (T5), 10 (T10), 15 (T15), 20 (T20), 30 (T30), 45 (T45) and 60 (T60) minutes postinjection. Rectal temperature was determined at T0 and T60. Adverse events occurring between the time of injection and T60 were recorded.

Results

Sedation scores were higher in group A2 at T15 and T30 compared with group S. There were no additional differences between groups in sedation score. The A2 group had higher sedation scores at T15, T20 and T30 compared with T0. The A1 group had higher sedation scores at T10 and T30 compared with T0. Temperature was lower in groups A1 and A2 compared with S at T60, but was not clinically significant. There were no differences between or within groups in HR or fR. Adverse effects were observed in both A1 and A2 groups. These included ataxia (17/20), auditory hyperesthesia (5/20), visual disturbance (5/20), pacing (4/20) and tremor (3/20).

Conclusions and clinical relevance

While alfaxalone at 2 mg kg?1 intramuscularly resulted in greater median sedation scores compared with saline, the range was high and adverse effects frequent. Neither protocol alone can be recommended for providing sedation in healthy dogs.  相似文献   

17.

Objective

To study the effects of MK-467, a peripheral α2-adrenoceptor antagonist, on sedation, heart rate and blood pressure after intramuscular (IM) coadministration with 25 μg kg?1 of dexmedetomidine in cats.

Study design

Prospective, randomized, controlled, blinded, cross-over, experimental study.

Animals

A total of eight healthy, adult, neutered male cats.

Methods

Cats were administered five IM treatments at least 2 weeks apart, consisting of dexmedetomidine 25 μg kg?1 (D25), MK-467 600 μg kg?1 (M600) and D25 combined with 300, 600 and 1200 μg kg?1 of MK-467 (D25M300, D25M600 and D25M1200, respectively). Heart rate and direct arterial blood pressure were recorded via telemetry and sedation assessed prior to treatments and at intervals for 8 hours thereafter.

Results

Heart rate decreased significantly after all treatments with dexmedetomidine and remained below baseline up to 240 (D25), 20 (D25M300) and 3 minutes (D25M600 and D25M1200). Mean arterial pressure (MAP) increased with D25, remained unchanged with M600 and decreased over time with all combination treatments. The highest and lowest MAP after each treatment were 168 ± 17 and 100 ± 14 (D25), 157 ± 18 and 79 ± 11 (D25M300), 153 ± 11 and 74 ± 10 (D25M600), 144 ± 12 and 69 ± 7 (D25M1200) and 136 ± 9 and 104 ± 13 mmHg (M600). All treatments with dexmedetomidine produced sedation although its duration was significantly reduced by the addition of MK-467.

Conclusions and clinical relevance

Dexmedetomidine induced bradycardia and hypertension, which were attenuated by all three doses of MK-467. The duration of sedation was reduced by MK-467. MK-467 may improve the cardiovascular tolerance of IM dexmedetomidine in cats.  相似文献   

18.

Objective

Propranolol has been suggested for anxiolysis in horses, but its sedation efficacy and side effects, both when administered alone and in combination with α2-adrenoceptor agonists, remain undetermined. This study aimed to document the pharmacokinetics and pharmacodynamics of propranolol, romifidine and their combination.

Study design

Randomized, crossover study.

Animals

Six adult horses weighing 561 ± 48 kg.

Methods

Propranolol (1 mg kg?1; treatment P), romifidine (0.1 mg kg?1; treatment R) or their combination (treatment PR) were administered intravenously with a minimum of 1 week between treatments. Alertness, behavioral responsiveness (visual and tactile) and physiologic variables were measured before and up to 960 minutes after drug administration. Blood was collected for blood gas and acid-base analyses and measurement of plasma drug concentrations. Data were analyzed using repeated-measures analysis of variance or Friedman with Holm–Sidak and Wilcoxon rank-sum tests (p < 0.05).

Results

Systemic clearance significantly decreased and the area under the concentration-time curve significantly increased for both drugs in PR compared with P and R. Both PR and R decreased behavioral responsiveness and resulted in sedation for up to 240 and 480 minutes, respectively. Sedation was deeper in PR for the first 16 minutes. Heart rate significantly decreased in all treatments for at least 60 minutes, and PR significantly increased the incidence of severe bradycardia (<20 beats minute?1).

Conclusions and clinical relevance

Although not associated with reduced behavioral responsiveness or sedation alone, propranolol augmented romifidine sedation, probably through alterations in romifidine pharmacokinetics, in horses administered PR. The occurrence of severe bradycardia warrants caution in the co-administration of these drugs at the doses studied.  相似文献   

19.

Objective

To evaluate whether intratesticular and incisional ropivacaine infiltration produces sufficient intra- and postoperative analgesia for castrating dogs under sedation.

Study design

Randomized, blinded, controlled clinical study.

Animals

Twenty-three healthy dogs weighing 5.8–35.6 kg admitted for castration.

Methods

Dogs were sedated with medetomidine (0.01 mg kg?1), butorphanol (0.2 mg kg?1) and midazolam (0.2 mg kg?1) intramuscularly, and were randomly assigned to group R, 0.2–0.4 mL kg?1 of ropivacaine 0.5%, or group S, an equivalent volume of saline injected intratesticularly and along the incision line. If persistent motion was observed during surgery, sedation was considered to be insufficient and general anaesthesia was induced. Carprofen 2.2 mg kg?1 was administered postoperatively. Pain was evaluated in all dogs before sedation and postoperatively following atipamezole administration at 1, 2, 4, 8 and 24 hours using an interactive visual analogue scale (IVAS; 0–100), the Glasgow composite pain scale-short form (CMPS-SF; 0–24), and a mechanical algometer. Methadone 0.3 mg kg?1 was administered intravenously to dogs if IVAS >30 or CMPS-SF >4.

Results

There was no significant difference between groups for the number of dogs administered general anaesthesia. The time from the beginning of surgery to induction of general anaesthesia was significantly shorter [median (range)] in group S [6 (3–25) minutes] than in group R [56 (36–76) minutes]. At 8 hours IVAS was significantly higher in group S (14 ± 10) than in group R (6 ± 4).

Conclusions and clinical relevance

Intratesticular and incisional ropivacaine infiltration delayed the time to anaesthesia induction, and provided analgesia after castration performed under deep sedation in dogs. Intratesticular local anaesthesia can be an important part of the anaesthetic plan for castration.  相似文献   

20.

Objective

To evaluate the effect of two levels of partial neuromuscular block (NMB) on arytenoid abduction, tidal volume (VT) and peak inspiratory flow (PIF) in response to a hypercarbic challenge in anesthetized dogs.

Study design

Prospective laboratory study.

Animals

Eleven healthy male Beagle dogs aged 3–5 years.

Methods

Dogs were anesthetized with propofol and dexmedetomidine infusions. The rima glottidis was observed via an endoscope placed through a laryngeal mask airway. Atracurium infusion was titrated to obtain two levels of partial NMB. The normalized glottal gap area (NGGA; glottal gap area normalized to height squared of rima glottidis) at peak inspiration during a hypercarbic challenge (10% CO2 inspired for 1 minute) was measured at baseline, during mild [train-of-four (TOF) ratio 0.4–0.6] and shallow (TOF ratio 0.7–0.9) NMB, and 30 minutes after spontaneous recovery from NMB. The VT and PIF were measured at the same time points and compared using anova for repeated measures and Tukey’s post hoc tests.

Results

The NGGA and VT were significantly lower than baseline during both levels of partial NMB with no difference between mild and shallow NMB (p < 0.05). They returned to baseline values after spontaneous recovery from NMB. PIF was not altered significantly during partial NMB.

Conclusions and clinical relevance

The NGGA and VT at peak inspiration in response to a hypercarbic challenge were reduced during partial NMB block, with decreased abduction of the arytenoid cartilages. This dysfunction was present even at shallow levels of NMB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号