首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The potential use of DNA-based methods for detecting airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae , both damaging pathogens of oilseed rape, was investigated. A method for purifying DNA from spores collected using Hirst-type spore samplers and detecting it using polymerase chain reaction (PCR) assays is described. For both pathogens, the sensitivities of the DNA assays were similar for spore-trap samples and pure spore suspensions. As few as 10 spores of L. maculans or P. brassicae could be detected by PCR and spores of both species could be detected against a background of spores of six other species. The method successfully detected spores of P. brassicae collected using spore traps in oilseed rape crops that were infected with P. brassicae. Leptosphaeria maculans spores were detected using spore traps on open ground close to L. maculans -infected oilseed rape stems. The potential use of PCR detection of airborne inoculum in forecasting the diseases caused by these pathogens is discussed.  相似文献   

2.
Blackleg disease (phoma stem canker) caused by the fungus Leptosphaeria maculans is a major disease of canola (oilseed rape, Brassica napus) worldwide. Canola plants in pots were exposed to blackleg‐infested stubble of canola with different complements of resistance genes and then assessed for disease. Plant mortality was reduced when plants were exposed to stubble from a cultivar with a different complement of resistance genes compared to stubble of a cultivar with the same resistance gene. These findings were consistent with 7 years of field surveys, which showed that changes in selection pressure as a result of extensive sowing of cultivars with major‐gene resistance, termed ‘sylvestris resistance’, dramatically influenced the frequency of virulent isolates in the population towards particular resistance genes, and therefore disease severity. All these data were supported by PCR‐genotyping surveys of fungal populations whereby the frequency of virulence alleles of avirulence genes AvrLm1 and AvrLm4 changed significantly depending on the resistance gene present in the cultivar from which the isolates were cultured. This is the first example of a study showing that sowing of canola cultivars with different complements of resistance genes in subsequent years, i.e. rotation of resistance genes, minimizes disease pressure by manipulating fungal populations. This approach provides a valuable disease management strategy for canola growers and is likely to be applicable to other plant diseases.  相似文献   

3.
Leptosphaeria maculans , the causal agent of phoma stem canker on oilseed rape, is an important pathogen in oilseed rape growing regions of the world, including Australia. Survival of L. maculans and associated mycobiota on oilseed rape stubble buried for 13 months in field soil and in sandy soil was studied under South Australian environmental conditions. Stubble weight decreased significantly by the end of the burial period, more so in field (53·7%) than in sandy soil (22%). Pseudothecia did not develop on stubble buried in field soil and few formed when buried in sandy soil. Moist incubation of stubble following retrieval from both media generated pseudothecia; however, pseudothecial development ceased on stubble that had been buried for 10 and 12 months in field and sandy soil, respectively. In total, 20 and 36 genera of fungi were isolated from stubble before and after burial, respectively. Alternaria spp., L. maculans and Stemphylium botryosum were isolated from 81·7, 70 and 60% of stubble pieces before burial, respectively. Isolation frequency of these species decreased significantly throughout the burial period in both media. Conversely, isolation frequency of Stachybotrys chartarum , Fusarium spp. and Trichoderma spp., having pre-burial frequencies of 26·7, 16·7 and 2·5%, respectively, increased over the burial period regardless of soil type. These findings suggest that inoculum production of L. maculans decreases with the increasing burial duration in field soil over 10 months, before ceasing, and this may be due to associated mycobiota.  相似文献   

4.
5.
A method based on real‐time polymerase chain reaction (PCR) and the use of rotating‐arm spore traps was developed for quantifying airborne Hymenoscyphus pseudoalbidus ascospores. The method was sensitive and reproducible, and the collection efficiency was 10% of the spores present in the air. The temporal ascospore dispersal pattern was studied over 3 years by collecting spores every 15 days for a 24 h air‐sampling period during the ash‐growing season. The highest production was detected from the end of June to the beginning of September. The overall ascospore production did not differ significantly among stands within a specific year but there were differences from year to year. There was a positive correlation between air temperature and the number of ascospores trapped, with most of the positive samples being observed at temperatures above 12°C. The vertical profile of ascospore dispersal showed a strong decrease in ascospore density within a height of 3 m, regardless of date of collection. An analysis of the spore traps installed at increasing distances from an infected stand showed that most of the ascospores were deposited downwind within 50 m of the stand. These data are discussed in context of the epidemiology of the disease.  相似文献   

6.
7.
8.
Sclerotinia stem rot of spring oilseed rape (Brassica napus) is caused by Sclerotinia sclerotiorum. In Sweden, the disease leads to severe crop damage that varies from year to year. A real‐time PCR assay was developed and used to determine the incidence of S. sclerotiorum DNA on petals and leaves of spring oilseed rape as well as in air samples, with the aim of finding tools to improve precision in disease risk assessment. Five field experiments were conducted from 2008 to 2010 to detect and study pathogen development. Assessments of stem rot showed significant differences between experimental sites. The real‐time PCR assay proved fast and sensitive and the relationship between percentage of infected petals determined using a conventional agar test and the PCR assay was linear (R> 0·76). There were significant differences in S. sclerotiorum incidence at different stages of flowering. The incidence of S. sclerotiorum DNA on the leaves varied (0–100%), with significantly higher incidence on leaves at lower levels. In one field experiment, S. sclerotiorum DNA was not detected on petals during flowering, whereas the pathogen was detected on leaves, with a corresponding stem rot incidence of 7%. The amount of S. sclerotiorum DNA in sampled air revealed that spore release did not coincide with flowering on that experimental site. Thus, using a real‐time PCR assay to determine the incidence of S. sclerotiorum on oilseed rape leaves, rather than on petals, could potentially improve disease risk assessment.  相似文献   

9.
A sound assessment of phoma stem canker symptoms is needed to develop epidemiological, agronomical and physiological studies on the pathosystem. A specific analysis was therefore carried out to: (i) compare four methods of crown canker assessment; (ii) test the among and within assessor repeatability of one of the methods compared; (iii) characterise the spatial pattern of the disease; and (iv) define the sample size required to achieve a given level of disease assessment precision. The methods compared examined the symptoms with different procedures and graded the plants observed into six severity classes. A disease index (DI) summarised the severity distribution observed. Examination of crown cross-sections was the most precise method for assessing crown cankers. The method was repeatable, though an 'assessor effect' was apparent. The disease generally had a random pattern although significant spatial correlations were detected for four out of the fifteen plots studied at the scales examined. A relationship between the coefficient of variation of the DI and the sample size was established, evaluated with experimental field data and exemplified for typical severity distributions.  相似文献   

10.
Three nursery fields and three rootstock mother fields from commercial nurseries located in Comunidad Valenciana region (central‐eastern Spain) were surveyed in July 2011 to detect the presence and to quantify Ilyonectria spp. in the soil. In each field, ten soil samples were taken randomly with a soil probe at a depth of 10–30 cm, and 10–20 cm from the base of the plant. Three replicate subsamples (10 g each) were taken from each soil sample. DNA was extracted and a multiplex nested PCR with species‐specific primer pairs (Mac1/MaPa2, Lir1/Lir2 and Pau1/MaPa2) was used to identify the species present. Among the 180 soil DNA samples analysed, Ilyonectria spp. were detected in 172 of them. Ilyonectria macrodidyma complex was the most frequently detected, being identified in 141 samples from all the fields evaluated. However, I. liriodendri was detected in only 16 samples, but was present in all open‐root field nurseries and in two rootstock mother fields. In addition, quantitative PCR (qPCR) assays were done to assess the levels of I. liriodendri and I. macrodidyma‐complex DNA in the soil samples. Detection of Ilyonectria spp. DNA using qPCR correlated with the fields found positive with the nested multiplex PCR. DNA concentrations of Ilyonectria spp. ranged from 0·004 to 1904·8 pg μL?1. In general, samples from rootstock mother fields showed the highest DNA concentrations. The ability to detect and quantify Ilyonectria spp. genomic DNA in soil samples from nursery fields and rootstock mother fields confirms soils from both field types as important inoculum sources for black‐foot pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号