首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Plant Diseases and Protection - In Brazil, Spigelia anthelmia is an herbaceous weedy plant normally used for the treatment of helminths in humans and animals. Leaves and stems of S....  相似文献   

2.
European Journal of Plant Pathology - Olive (O. europaea L.) is an expanding crop in the south of Brazil. Blossom blight and typical anthracnose symptoms on fruit were observed in olive trees in an...  相似文献   

3.
Colletotrichum acutatum causes two diseases of citrus, postbloom fruit drop (PFD) and Key lime anthracnose (KLA). PFD is a disease restricted to flowers of sweet orange and most other citrus, and symptoms include petal necrosis, abscission of developing fruit, and the formation of persistent calyces. KLA is a disease of foliage, flowers, and fruits of Key lime only, and symptoms include necrotic lesions on leaves, fruits, twigs, flowers, and blight of entire shoots. The internal transcribed spacers 1 and 2 and the gene encoding the 5.8S ribosomal RNA subunit within the nuclear ribosomal cluster (ITS) and intron 2 of the glyceraldehyde-3-phosphate dehydrogenase gene (G3PD) were sequenced for isolates from PFD-affected sweet orange and KLA-affected Key limes collected in the United States (Florida), Brazil (S?o Paulo), Mexico, Belize, Costa Rica, and the Dominican Republic to determine if there are consistent genetic differences between PFD and KLA isolates over the geographic area where these diseases occur. Based on the sequence data, isolates clustered into two well-supported clades with little or no sequence variation among isolates within clades. One clade (PFD clade) contained PFD isolates from all countries sampled plus a few isolates from flowers of Key lime in Brazil. The other clade (KLA clade) contained KLA isolates from Key lime foliage from all countries sampled and one isolate from flowers of sweet orange in Mexico. In greenhouse inoculations with PFD and KLA isolates from Florida, isolates from both clades produced PFD symptoms on Orlando tangelo flowers, but KLA-clade isolates produced significantly less severe symptoms. PFD-clade isolates were not pathogenic to Key lime foliage, confirming previous studies. The differentiation of PFD and KLA isolates into two well-supported clades and the pathogenicity data indicate that PFD and KLA are caused by distinct phylogenetic lineages of C. acutatum that are also biologically distinct. PFD is a recently described disease (first reported in 1979) relative to KLA (first reported in 1912) and it had been proposed that strains causing PFD evolved from strains causing KLA eventually losing pathogenicity to Key lime foliage. We reject the hypothesis that PFD strains have diverged from KLA strains recently based on estimated divergence times of haplotypes and it appears that PFD and KLA strains have been dispersed throughout the Americas independently in association with each host.  相似文献   

4.
Anthracnose is an important disease affecting mature olive fruits, causing significant yield losses, and poor fruit and oil quality. In Portugal, high anthracnose incidence was recorded during 2003–2007 with 41% of 908 orchards surveyed displaying disease symptoms. In another 14% of the orchards, the pathogen was recorded in symptomless plants. Disease severity was on average 36%, frequently reaching 100%. In Portugal, anthracnose is endemic to neglected orchards of susceptible cultivars, but under favourable conditions it can also severely affect less susceptible cultivars. Pathogens were genetically heterogeneous, with Colletotrichum acutatum genetic group A2 as the most frequent (80%), followed by group A4 (12%) and group A5 along with C. gloeosporioides (3–4%), while groups A3 and A6 of C. acutatum were sporadic. Important geographic variations were observed in the frequencies of these populations, accompanied by year‐to‐year populational shifts. Epidemiology and histopathology studies showed the presence of the pathogens on vegetative organs year‐round, particularly on olive leaves and branches, and on weeds. These represent inoculum reservoirs where secondary conidiation occurs, and conidia are then dispersed by spring rains reaching flowers and young fruits or by autumn rains reaching pre‐mature fruits. Unripe fruits were colonized without showing symptoms up to penetration of the cuticle, but further colonization and symptom production was completed only as fruits matured. These findings challenge current control practices, particularly the timing of fungicide treatment, and contribute to improved disease management.  相似文献   

5.
6.
7.
Journal of General Plant Pathology - In July 2018, tillandsia (Tillandsia sp.) plants with brown to dark brown lesions on the leaves and pseudobulbs were found in Japan. Based on morphological and...  相似文献   

8.
Moral J  Trapero A 《Phytopathology》2012,102(10):982-989
Anthracnose, caused by Colletotrichum spp., is a destructive disease of olive fruit worldwide. The objective of this study was to investigate the influence of agronomical and weather factors on inoculum production using detached olive fruit and on the development of epidemics in the field. The pathogen produced very large numbers of conidia on rotted (>1.87 × 10(8) conidia/fruit) or mummified (>2.16 × 10(4) conidia/fruit) fruit under optimal conditions. On mummified fruit, conidial production was highest on mummies incubated at 20 to 25°C and 96 h of wetness. Repeated washings of mummies reduced conidial production until it was very low after five washings. When mummies were placed in the tree canopy, conidial production was not reduced after 6 months (May to October); but, when they were held on the soil or buried in the soil, conidial production comparatively decreased up to 10,000 times. Anthracnose epidemics on susceptible 'Hojiblanca' and 'Picudo' during three seasons (2005-08) were influenced by rainfall, temperature, and fruit ripening, and had three main phases: the latent period (May to October); the onset of the epidemic, which coincided with the beginning of fruit ripening (early November); and disease development, which was predicted by the Weibull model (November to March). No epidemics developed on the susceptible cultivars during the driest season (2007-08) or on the resistant 'Picual' olive during any of the three seasons. These results provide the basis for a forecasting system of olive anthracnose which could greatly improve the management of this disease.  相似文献   

9.
Postbloom fruit drop (PFD) is caused by both Colletotrichum acutatum and C. gloeosporioides and is a potentially serious disease in citrus that occurs when flowering coincides with rainfall. The fungus incites necrotic lesions in petals and stigmas leading to premature fruit drop and reduced yield. The mechanisms of infection and survival of the causal agents remain to be fully elucidated. In the present study, we investigated the histopathology of PFD caused by C. acutatum in the petals and stigmas of sweet oranges using electron and light microscopy. In the petals, pathogen penetration occurred intra and intercellularly and also through the stomata, with intercellular penetration occurring most frequently. The distinct tissues of the petals were colonised, including the vascular system, particularly the xylem. Acervuli were observed on both sides of the petals. Although the fungus did not penetrate through the epidermal cells of the stigma, C. acutatum caused necrosis and an increase of phenolics in this tissue. A protective layer rich in lipophilic and phenolic compounds was formed under the necrotic area and crystals of oxalate were associated with the sites where the pathogen was present.  相似文献   

10.
11.
The first recorded outbreak of anthracnose ( Colletotrichum acutatum ) on ornamental lupin in the United Kingdom occurred in 1989. Seedborne infection by Colletotrichum acutatum was investigated after seed was implicated in the origin of the outbreaks and infection was found on seed of three of 14 cultivars tested. In pathogenicity tests, typical anthracnose symptoms developed only on plants of Lupinus spp; there were slight symptoms on Pisum sativum Vicia sativa and Lathyrus odoratus , but none on Vicia faba, Phaseolus coccineus, P. vulgaris and Onobrychis viciifolia  相似文献   

12.
13.
Since 2009, a severe decline leading to mortality has been observed affecting nearly 5 ha of a wild olive woodland of high ecological value in Seville, southern Spain. Phytophthora cryptogea and P. megasperma were consistently isolated from roots and rhizosphere of trees with symptoms sampled in 2009, 2011 and 2013. The isolates were identified on the basis of colony and reproductive structure morphology as well as temperature–growth relationships, and identification was further corroborated by their ITS and β‐tubulin sequences. Koch's postulates were demonstrated for both species on 1‐year‐old wild olives. Pathogenicity tests showed that both Phytophthora spp. are highly aggressive pathogens, although temperature–growth requirements for each species were distinct. As a consequence, the two species may be active in different seasons and their epidemiology may be differently influenced by global climate change, and they may show their active periods in different climatic scenarios. The climate change models for the Mediterranean Basin forecast a global temperature increase that favours the more thermophilic P. cryptogea. The high susceptibility to phytophthora root rot should not be disregarded in olive breeding programmes where wild olive is used as a source of resistance to verticillium wilt.  相似文献   

14.
The influence of temperature, wetness duration, and planting density on infection of olive fruit by Colletotrichum acutatum and C. simmondsii was examined in laboratory and field experiments. Detached olive fruit of 'Arbequina', 'Hojiblanca', and 'Picual' were inoculated with conidia of several isolates of the pathogen and kept at constant temperatures of 5 to 35°C in humid chambers. Similarly, potted plants and stem cuttings with fruit were inoculated and subjected to wetness periods of 0 to 48 h. Infection occurred at 10 to 25°C, and disease severity was greater and the mean latent period was shorter at 17 to 20°C. Overall, C. acutatum was more virulent than C. simmondsii at temperatures <25°C. When temperature was not a limiting factor, disease severity increased with the wetness period from 0 to 48 h. Disease severity was modeled as a function of temperature and wetness duration; two critical fruit incidence thresholds were defined as 5 and 20%, with wetness durations of 1.0 and 12.2 h at the optimum temperature. In the field, anthracnose epidemics progressed faster in a super-high-density planting (1,904 olive trees/ha) than in the high-density plantings (204 to 816 olive trees/ha) and caused severe epidemics in the super-high-density planting even with the moderately resistant Arbequina. Data in this study will be useful for the development of a forecasting system for olive anthracnose epidemics.  相似文献   

15.
Early anthracnose caused by Colletotrichum acutatum has become an increasingly serious disease on green, unripe bell pepper fruit in Florida. This contrasts with earlier reports of anthracnose occurring on bell pepper primarily as a ripe-rot disease of mature, colored pepper fruit caused by Colletotrichum gloeosporioides. Management of anthracnose on green bell pepper fruit using fungicides and a commercial inducer of systemic acquired resistance, acibenzolar-S-methyl (ASM), was evaluated during three seasons. In two of the three trials, all the fungicides tested including azoxystrobin, fludioxonil + cyprodinil, mancozeb, famoxadone + cymoxanil, copper hydroxide, and ASM significantly increased the number of marketable fruit compared with control plants. These trials identified fungicides that could contribute to a successful pest management program on pepper for controlling anthracnose caused by C. acutatum. The cross-infectivity potential of C. acutatum was investigated on tomato and strawberry by in vitro and field inoculation. Anthracnose lesions formed readily on wound-inoculated detached fruits of all hosts in in vitro assays. Under field conditions, after inoculation, anthracnose lesions occurred on pepper fruit but no lesions of anthracnose were found on either ripe or unripe tomato or strawberry fruit in adjacent plots.  相似文献   

16.
In 2012, Colletotrichum isolates were collected from field‐grown safflower (Carthamus tinctorius) crops in central Italy from plants exhibiting typical anthracnose symptoms. Colletotrichum isolates were also collected from seed surfaces and from within seeds. The genetic variability of these isolates was assessed by a multilocus sequencing approach and compared with those from Colletotrichum chrysanthemi and Colletotrichum carthami isolates from different geographic areas and other Colletotrichum acutatum sensu lato‐related isolates. Phylogenetic analysis revealed that all of the strains isolated from C. tinctorius belonged to the species described as C. chrysanthemi, whereas all of the strains belonging to C. carthami had been isolated from Calendula officinalis. Phenotypic characterization of isolates was performed by assessing growth rates at different temperatures, morphology of colonies on potato dextrose agar (PDA) and the size of conidia. All C. chrysanthemi isolates from safflower had similar growth rates at different temperatures, comparable colony morphologies when grown on PDA and conidial sizes consistent with previously described C. chrysanthemi isolates. Pathogenicity tests were performed by artificially inoculating both seeds and plants and confirmed the seedborne nature of this pathogen. When inoculated on plants, C. chrysanthemi caused the typical symptoms of anthracnose on leaves. This is the first record of this pathogen on C. tinctorius in Italy, and it presents an updated characterization of Colletotrichum isolates pathogenic to safflowers in Europe.  相似文献   

17.
Anthracnose fruit rot of blueberries caused by Colletotrichum acutatum is a serious problem in humid blueberry‐growing regions of North America. In order to develop a disease prediction model, environmental factors that affect mycelial growth, conidial germination, appressorium formation and fruit infection by C. acutatum were investigated. Variables included temperature, wetness duration, wetness interruption and relative humidity. The optimal temperature for mycelial growth was 26°C, and little or no growth was observed at 5 and 35°C. The development of melanized appressoria was studied on Parafilm‐covered glass slides and infection was evaluated in immature and mature blueberry fruits. In all three assays, the optimal temperature for infection was identified as 25°C, and infections increased up to a wetness duration of 48 h. Three‐dimensional Gaussian equations were used to assess the effect of temperature and wetness duration on the development of melanized appressoria (R2 = 0·89) on Parafilm‐covered glass slides and on infection incidence in immature (R2 = 0·86) and mature (R2 = 0·90) blueberry fruits. Interrupted wetness periods of different durations were investigated and models were fitted to the response of melanized appressoria (R2 = 0·95) and infection incidence in immature (R2 = 0·90) and mature (R2 = 0·78) blueberry fruits. Additionally, the development of melanized appressoria and fruit infection incidence were modelled in relation to relative humidity (R2 = 0·99 and 0·97, respectively). Three comprehensive equations were then developed that incorporate the aforementioned variables. The results lay the groundwork for a disease prediction model for anthracnose fruit rot in blueberries.  相似文献   

18.
The potential of UV‐C radiation of Andean lupin (Lupinus mutabilis) seeds to eradicate seedborne infections of anthracnose caused by Colletotrichum acutatum was investigated. UV‐C doses from 0 to 691.2 kJ m?2 (resulting from 0 to 96 h of exposure time) on disease incidence reduction and germination on artificially and naturally infected seed were evaluated. The degree of incidence reduction and seed germination was dependent on the dose of UV‐C. The UV‐C doses of 86.4 kJ m?2 and higher reduced incidence from 6% to 7% to undetectable levels, but these UV‐C doses also reduced seed germination. UV‐C can deleteriously affect physiological processes and overall growth. To assess its impact, L. mutabilis seeds irradiated with UV‐C doses of 57.6 and 86.4 kJ m?2 were grown. Seedlings grown from noninfected seed and UV‐C treated seed showed an increased concentration of chlorophyll and protein contents, as well as an increase in the activation of defence enzymes peroxidase and catalase, in comparison with plants grown from infected seed. UV‐C doses resulted in seed emergence and seedling dry weight rates that were similar to the noninfected control or better than the fungicide control. Moreover, 57.6 kJ m?2 reduced transmission of the pathogen from seed to the plantlets by 80%, while 86.4 kJ m?2 apparently eradicated the pathogen, under greenhouse conditions. The use of UV‐C, first reported here, is advantageous for controlling anthracnose in lupin.  相似文献   

19.
Wang  Shumin  Hu  Meijiao  Qu  Xiangxiang  Yang  Jinyu  Gao  Zhaoyin  Wang  Shuming  Liu  Zhiqiang  Li  Min 《Journal of General Plant Pathology》2022,88(5):344-348

In June 2021, a leaf spot was found on Dracaena cambodiana on Yongxing island of Sansha City, Hainan Province, China. The disease mainly occurred at the tips or edges of older leaves. About 50% of leaves were showed necrotic symptoms. Similar fungal isolates were obtained from all sterilized sections incubated on PDA. The fungus was identified as Colletotrichum queenslandicum by morphological characteristics and multi-locus phylogenetic analyses with ITS region of rDNA, GADPH, CHS-1, ACT, GS and TUB-2 gene sequences. This is the first report of Colletotrichum queenslandicum causing leaf anthracnose on Dracaena cambodiana.

  相似文献   

20.
Strawberry, Fragaria × ananassa, and leatherleaf fern, Rumohra adiantiformis, are two important crops in Costa Rica. One of the most severe diseases affecting these crops is anthracnose, caused by members of the fungal genus, Colletotrichum (teleomorph; Glomerella). Eighty single-spore isolates from strawberry and leatherleaf fern were identified as Colletotrichum acutatum by species-specific PCR, and were further characterised by Universally Primed PCR (UP-PCR) fingerprinting analysis, and sequence analysis of the ribosomal internal transcribed spacer (ITS) region. Morphological differences, genotypic variation revealed by UP-PCR fingerprinting analysis, and a single sequence polymorphism within the ITS2 region were found between the isolates from strawberry and leatherleaf fern, respectively. The UPGMA cluster analysis of the fingerprints clearly separated the isolates derived from strawberry and leatherleaf fern into two different clusters. Pathogenicity assays on detached strawberry fruits confirmed the apparent difference between the two groups of isolates. It is therefore suggested that the pathogens responsible for strawberry anthracnose fruit rot and leatherleaf fern anthracnose in Costa Rica, belong to two distinct subpopulations of C. acutatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号