首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collection of biting midges was taking place some months before the first bluetongue outbreak in Belgium in August 2006. The Walloon Agricultural Research Centre had been monitoring aphid populations at two sites annually in Belgium (Gembloux and Libramont), using two stationary ‘12-m’ Rothamsted suction traps. For the Gembloux trap, collections of insects captured daily from 11 May 2006 onwards were already available at the time of the outbreak. An examination of these samples revealed the presence of Culicoides, some species of which are considered as potential vectors of the bluetongue virus (BTV). The trapping was therefore extended beyond the normal aphid activity period and the Culicoides captured were identified to species level. From 11 May to 31 December 2006, the Gembloux trap caught 664 Culicoides specimens belonging to 19 species comprising known BTV-vectors. The second trap, at Libramont, was reactivated from 12 September to 13 October and caught 97 specimens belonging to nine species, all of which had been found at the Gembloux site. Among the 19 species identified, four were new to Belgian fauna: Culicoides achrayi, C. deltus, C. lupicaris and C. newsteadi. This paper examines the overall phenology and the physiological status of Culicoides in 2006 before and during the bluetongue epidemic. It discusses the potential of the Rothamsted suction trap to monitor Culicoides.  相似文献   

2.
In response to the first bluetongue outbreak in Belgium a monitoring programme was started at the end of August 2006 to identify possible vectors transmitting the disease. Black light traps were deployed at 36 outbreak sites and captured 1959 Culicoides specimens belonging to 16 different species. Eighty four percent of the biting midges captured belonged to the C. obsoletus complex, among them C. obsoletus s.s., C. dewulfi and C. scoticus, three suspected bluetongue vectors. The Veterinary and Agrochemical Research Centre detected viral RNA in pools of individuals belonging to this complex. Culicoides pulicaris, a potential bluetongue vector in Italy, should yet not be excluded as a possible vector in Belgium as this species was frequently found around outbreak sites, notwithstanding this species is not easily captured with the trapping techniques used during this survey.  相似文献   

3.
A light-trap survey was undertaken of the species composition, seasonal abundance and parity of Culicoides at Roma, Lesotho, to establish whether the likely vectors for bluetongue and African horse sickness occur in this area as well as the chance of transmission. A total of 34 catches was made between 21 September 1985 and 24 September 1986; 32,819 Culicoides were caught belonging to 19 species. Culicoides numbers rapidly built up from December to a peak in February which implies that this may also be the optimum time for virus transmission. The number of Culicoides dropped sharply in April with the onset of cooler conditions. C. zuluensis was the dominant species forming 69.6% of the totalled catches, followed by C. pycnostictus with 11.7%. C. imicola, the only proven vector of bluetongue, was never abundant representing only 4.4% of the midges caught. The parous rate for each of the 2 commonest species was low, implying a low vector capacity.  相似文献   

4.
Between July and September 2002 there were outbreaks of bluetongue on three sheep holdings in the communities of San Gregorio Magno (Salerno, Campania), Laviano (Salerno, Campania) and Carpino (Foggia, Puglia), and the involvement of bluetongue virus (btv) was confirmed serologically and virologically. The mortality rate was at least 11 per cent and involved btv serotype 2 (btv-2) and serotype 9 (btv-9). These holdings were also surveyed for the Culicoides (Diptera: Ceratopogonidae) vectors; approximately 10,000 midges belonging to 15 species were captured, but they did not include a single specimen of the classical Afro-Asiatic bluetongue vector, Culicoides imicola. Species belonging to the Obsoletus complex dominated the light-trap collections, and Culicoides obsoletus Meigen, Culicoides scoticus Downes and Kettle and Culicoides dewulfi Goetghebuer constituted 90 per cent of all the Culicoides species captured. Fifty-six pools of the Obsoletus complex (excluding C dewulfi), each containing 100 individual midges and containing only parous and gravid females, were assayed for virus. btv-2 was isolated from three pools from San Gregorio Magno and Carpino, and btv-9 was isolated from one pool from Laviano. These results indicate that a species other than C imicola is involved in the current re-emergence of bluetongue in the Mediterranean Basin, but whether it is C obsoletus sensu stricto or C scoticus, or both, is uncertain.  相似文献   

5.
The outbreak of bluetongue (BT) in northern Europe 2006 initiated the monitoring of vectors, biting midges of the genus Culicoides in Sweden. In order to determine the diversity, distribution and seasonal dynamics of Culicoides, weekly collections were made during 2008 and during March-December 2009 using the Ondestepoort Veterinary Institute black light trap. Twenty sampling sites were selected in 12 provinces. In total of 30,704 Culicoides were collected in 2008 and 32,252 in 2009. The most abundant species were the potential vectors of BTV Culicoides obsoletus/C. scoticus that comprised of 77% of the total catches. Other biting midges collected were Culicoides impunctatus (9%), Culicoides grisescens (3%), Culicoides punctatus (2%), Culicoides chiopterus (2%) and Culicoides pulicaris (2%). Culicoides obsoletus/C. scoticus were most abundant during May-June and August-September. The majority of the species were active from March to November in 2008 and April to October in 2009. Species considered as potential vectors of bluetongue virus (BTV) occurred as far north as latitude 65°N (Kalix).  相似文献   

6.
When in 2006 infection with bluetongue for the first time occurred in Germany the registered and already against flies and tabanids in cattle proofed Flectron ear tags were used against the blood feeding vector midges (Culicoides) also. However, the efficacy against gnats was not yet proofed. The efficacy of 1 and 2 ear tags (1,067 g cypermethrin per ear tag) per animal was investigated in North Germany with 237 heifers and dairy cows. Midges were caught in suction light traps close to the cattle on pasture or became trapped by mouth operated aspirators directly at the skin of the animal bodies. Within 12,051 specimens of midges 12 species of Culicoides could be identified. On grasslands 3 species, C. obsoletus, C. pulicaris and C. dewulfi were found to be dominant. These 3 species are also known to be vectors of BTV. The toxic efficacy was found for 14 days with 1 ear tag and up to 21 days with 2 ear tags. This duration of efficacy was confirmed in the laboratory with hair clippings from the dorsal line and the ventral abdomen (bioassay). In accordance with workers in the U.S.A. it is concluded that insecticide-impregnated ear tags will reduce the number of biting midges, and by this way the risk of infection with BTV in herds of treated cattle will be reduced as well as in other cattle of a particular region. It is concluded that ear tags are of considerable value as part of an integrated control program for BT, e.g. vaccination.  相似文献   

7.
On four nights in June 2008, light traps were operated for Culicoides biting midges, the vector species for bluetongue virus (BTV), at five sites in Chester Zoo in north-west England. Over 35,000 Culicoides midges, of 25 species, were captured, including high densities inside animal enclosures. Over 94 per cent of all the Culicoides trapped were females of the Obsoletus group, which is implicated as the vector of BTV serotype 8 in northern Europe. The mean catch of this group per trap per night was over 1500, suggesting a potential risk of BTV transmission if the virus is introduced to Chester Zoo in the animals or midges in the summer.  相似文献   

8.
The Netherlands has enjoyed a relatively free state of vector-borne diseases of economic importance for more than one century. Emerging infectious diseases may change this situation, threatening the health of humans, domestic livestock and wildlife. In order to be prepared for the potential outbreak of vector-borne diseases, a study was undertaken to investigate the distribution and seasonal dynamics of candidate vectors of infectious diseases with emphasis on bluetongue vectors (Culicoides spp.). The study focused primarily on the relationship between characteristic ecosystems suitable for bluetongue vectors and climate, as well as on the phenology and population dynamics of these vectors. Twelve locations were selected, distributed over four distinct habitats: a wetland area, three riverine systems, four peat land areas and four livestock farms. Culicoides populations were sampled continuously using CO(2)-baited counterflow traps from July 2005 until August 2006, with an interruption from November 2005 to March 2006. All vectors were identified to species level. Meteorological and environmental data were collected at each location. Culicoides species were found in all four different habitat types studied. Wetland areas and peat bogs were rich in Culicoides spp. The taxonomic groups Culicoides obsoletus (Meigen) and Culicoides pulicaris (Linnaeus) were strongly associated with farms. Eighty-eight percent of all Culicoides consisted of the taxon C. obsoletus/Culicoides scoticus. On the livestock farms, 3% of Culicoides existed of the alleged bluetongue vector Culicoides dewulfi Goetghebuer. Culicoides impunctatus Goetghebuer was strongly associated with wetland and peat bog. Many Culicoides species were found until late in the phenological season and their activity was strongly associated with climate throughout the year. High annual variations in population dynamics were observed within the same study areas, which were probably caused by annual variations in environmental conditions. The study demonstrates that candidate vectors of bluetongue virus are present in natural and livestock-farm habitats in the Netherlands, distributed widely across the country. Under favourable climatic conditions, following virus introduction, bluetongue can spread among livestock (cattle, sheep and goats), depending on the nature of the viral serotype. The question now arises whether the virus can survive the winter conditions in north-western Europe and whether measures can be taken that effectively halt further spread of the disease.  相似文献   

9.
10.
In August 2006, bluetongue virus (BTV) was detected in the Netherlands, Belgium, western Germany, Luxembourg and northern France for the first time. Consequently, a longitudinal entomological study was conducted in the affected region of northern France (Ardennes) throughout the autumn of 2006. Data on the spatio-temporal distribution of Culicoides (Diptera: Ceratopogonidae) associated with livestock were collected and an attempt was made to identify the vector(s) involved in BTV transmission by means of virus detection in wild-caught biting midges. Weekly sampling using standardized Onderstepoort-type blacklight traps were performed simultaneously both outdoors and indoors in one BTV-free and three BTV-affected farms between September and December 2006. Culicoides were sorted according to farm, location (outdoors vs. indoors), time point (in weeks), species and physiological stage. BTV detection was conducted by RT-PCR on monospecific pools of non-bloodfed parous female Culicoides. The principal results showed: (i) the absence of the Mediterranean vector, C. imicola, (ii) the relatively low abundance of C. dewulfi and C. pulicaris, (iii) the widespread occurrence and abundance of C. obsoletus/C. scoticus with longevity and behaviour compatible with BTV transmission, and (iv) all Culicoides pools tested for BTV were negative. In France, the very low levels of BTV-8 circulation were probably due to the limited introduction of the virus from affected neighbouring countries, and not due to the absence of local vector populations. A key finding has been the substantiation, for the first time, that Culicoides, and particularly the potential vectors C. obsoletus/C. scoticus and C. dewulfi, can be active at night inside livestock buildings and not only outside, as originally believed. The endophagic tendencies of members of the Obsoletus group are discussed in light of the prolonged period of BTV transmission during the autumn of 2006 and the risk of BTV overwintering and resurgence in the spring of 2007. Overall, there is an urgent need to improve our knowledge on the ecology of local Culicoides species before any clear, effective and reliable recommendations can be provided to the veterinary authorities in terms of prevention and control.  相似文献   

11.
A novel method was developed and implemented during the recent outbreak of bluetongue (BT) in sheep and cattle in The Netherlands to obtain rapidly a 'snapshot' of Culicoides vector densities at the national level. The country was divided into 110 raster cells, each measuring 20kmx20km; within 106 of these cells, a farm was selected with a minimum of 10 cattle and sampled for Culicoides for one night only using the Onderstepoort-type blacklight trap. Prior to deployment of the light traps in the field, local veterinarians were trained in their use and in the preservation of captured Culicoides. The collections were despatched daily by courier to a field laboratory where the Culicoides were counted and identified. The 'snapshot' commenced on 12 September 2006 and was completed on 28 September coinciding with the 5-7 weeks of BT virus (BTV) activity in The Netherlands and when the number of weekly cases of disease was on the rise. Analysis of the 106 collections was completed on 5 October. The number of grid cells in which a taxon occurred is represented by the index 20(2)gFR (=20kmx20km grid Frequency Rate); this index essentially reflects the percentage of examined raster cells found to contain the potential vector in question. The 'snapshot' results can be summarised as follows: The northward advance of BT in Europe compels the competent authorities in affected and in neighbouring territories to acquire rapidly baseline information around which to plan sound vector surveillance and livestock movement strategies. The Culicoides 'snapshot' is a tool well suited to this purpose. It is stressed that a vector surveillance program must be built upon a firm taxonomic base because misidentifications will flaw the mapped seasonal and geographic distribution patterns upon which veterinary authorities depend.  相似文献   

12.
Bluetongue virus is transmitted by Culicoides biting midges (Diptera: Ceratopogonidae). Culicoides associated with livestock were captured using CDC blacklight traps at three BTV-infected farms in Basque Country between November 2007 and December 2008. Twenty-seven and nineteen Culicoides species were collected in outdoor and indoor habitats respectively. Indoor insect community represented 86.1% of the whole captured individual biting midges. Culicoides obsoletus/Culicoides scoticus (two sibling species of the Obsoletus complex) were dominant throughout all months and sexes with maximum phenological peaks in November 2007 and June-July 2008. Culicoides lupicaris was the second most dominant species followed by Culicoides pulicaris (both species of the Pulicaris complex). Few specimens of Culicoides imicola, the principal Afro-Mediterranean vector of BTV, as well as four new species recorded for the Iberian Peninsula, were also collected. BTV was detected by RT-PCR from pools of C. obsoletus/C. scoticus, C. lupicaris and C. pulicaris parous females. DL-Lactic acid significantly attracted more C. obsoletus/C. scoticus females and males, C. lupicaris females, C. pulicaris females and Culicoides punctatus females and males; whereas acetone increased only the captures of Culicoides achrayi.  相似文献   

13.
Culicoides were captured at a BTV-infected dairy near Gulpen in the province of Limburg (south-east Netherlands) between 14 September and 4 October 2006. Onderstepoort-type blacklight traps were used to sample Culicoides both inside and outside a partially open shed housing 11 cattle. A total of 28 light trap collections were made at the shed and yielded: In Europe, the blacklight trap is used widely for the nocturnal monitoring of Culicoides; a drawback to this approach is that this trap cannot be used to sample midges that are active during the day. Because diurnal biting in vector Culicoides may constitute a significant and underestimated component of BTV transmission a novel capture methodology will be required in future and is discussed briefly.  相似文献   

14.
The Netherlands has enjoyed a relatively free state of vector-borne diseases of economic importance for more than one century. Emerging infectious diseases may change this situation, threatening the health of humans, domestic livestock and wildlife. In order to be prepared for the potential outbreak of vector-borne diseases, a study was undertaken to investigate the distribution and seasonal dynamics of candidate vectors of infectious diseases with emphasis on bluetongue vectors (Culicoides spp.). The study focused primarily on the relationship between characteristic ecosystems suitable for bluetongue vectors and climate, as well as on the phenology and population dynamics of these vectors.Twelve locations were selected, distributed over four distinct habitats: a wetland area, three riverine systems, four peat land areas and four livestock farms. Culicoides populations were sampled continuously using CO2-baited counterflow traps from July 2005 until August 2006, with an interruption from November 2005 to March 2006. All vectors were identified to species level. Meteorological and environmental data were collected at each location.Culicoides species were found in all four different habitat types studied. Wetland areas and peat bogs were rich in Culicoides spp. The taxonomic groups Culicoides obsoletus (Meigen) and Culicoides pulicaris (Linnaeus) were strongly associated with farms. Eighty-eight percent of all Culicoides consisted of the taxon C. obsoletus/Culicoides scoticus. On the livestock farms, 3% of Culicoides existed of the alleged bluetongue vector Culicoides dewulfi Goetghebuer. Culicoides impunctatus Goetghebuer was strongly associated with wetland and peat bog. Many Culicoides species were found until late in the phenological season and their activity was strongly associated with climate throughout the year. High annual variations in population dynamics were observed within the same study areas, which were probably caused by annual variations in environmental conditions.The study demonstrates that candidate vectors of bluetongue virus are present in natural and livestock-farm habitats in the Netherlands, distributed widely across the country. Under favourable climatic conditions, following virus introduction, bluetongue can spread among livestock (cattle, sheep and goats), depending on the nature of the viral serotype. The question now arises whether the virus can survive the winter conditions in north-western Europe and whether measures can be taken that effectively halt further spread of the disease.  相似文献   

15.
Between February and May 1998, approximately 100 horses died of African horse sickness (AHS) in the cooler, mountainous, central region of South Africa. On 14 affected farms, 156,875 Culicoides of 27 species were captured. C. imicola Kieffer, hitherto considered the only field vector for AHS virus (AHSV), constituted <1% of the total Culicoides captured, and was not found on 29% of the farms. In contrast, 65% of the Culicoides were C. bolitinos Meiswinkel, and was found on all farms. Five isolations of AHSV were made from C. bolitinos, and none from 18 other species of Culicoides (including C. imicola).  相似文献   

16.
A total of 33,564 Culicoides midges was collected in 44 light trap collections made at 22 sites in the Stellenbosch area during November 1986. Of the 23 species present in these collections 8 were frequently encountered namely, C. magnus, C. imicola, Culicoides sp. 49, C. zuluensis, C. gulbenkiani, C. pycnostictus, C. distinctipennis and C. nivosus. Although C. magnus was abundant at all trap sites, the prevalence of the other species appeared to be affected by the proximity of the light trap to different host animals and/or larval habitats. Plain-wing species and members of the C. schultzei group were rarely collected. The larval habitats of most of the above species were located by the use of tent-type emergence traps. All these habitats were found on irrigated pastures or where drainage water had accumulated. The difference in the requirements of the various species was associated with certain factors, such as degree of moisture, the type and amount of organic matter present and the particle size of the underlying soil. The identity of the blood-meals of 69 individual Culicoides belonging to 7 species was determined. The 5 commonest species had all fed on cattle and 4 of these on sheep. Two species, C. pycnostictus and C. distinctipennis were positive for bird blood.  相似文献   

17.
The vector potential of British Culicoides species for bluetongue virus   总被引:1,自引:0,他引:1  
Two species of British Culicoides, C. nubeculosus and C. impunctatus were found to support bluetongue virus (BTV) multiplication after ingestion of the virus. Both species were infected by membrane feeding and C. nubeculosus also became infected after feeding on viraemic sheep. This species was shown to transfer the virus across a membrane after 8 days incubation at 25 degrees C and could therefore presumably act as a BTV vector. Six other British species of Culicoides supported BTV multiplication after intrathoracic inoculation of the virus.  相似文献   

18.
19.
Culicoides spp. act as vectors for a number of viral diseases of animals including bluetongue in sheep. The aims of this study were to determine: (1) which Culicoides spp. are associated with sheep in The Netherlands; (2) the time of the day when they are most active; and (3) the effect of treatment of animals with a permethrin insecticide. Two pairs of sheep were each housed within mosquito tents of either one or two layers of netting and all trapped Culicoides spp. were identified microscopically. For the permethrin insecticide study, one of two pairs of sheep was treated with 3.6% permethrin and all animals were housed in tents of similar design. Of the 6210 midges captured, 54.1% were identified as C. chiopterus and 42.7% as C. obsoletus. C. imicola was not identified. The average insect feeding rate was 35-40% and midge activity was greatest around sunset. Permethrin treatment reduced the number of midges captured by 50% and also resulted in a decrease in the percentage of midges that had fed. The findings provide useful information on the behaviour and distribution of Culicoides spp. that will facilitate the development of appropriate control strategies to minimise the risk of insect-vector borne virus diseases such as bluetongue.  相似文献   

20.
After bluetongue (BT) appeared in northern Europe in August 2006 entomological studies were implemented in all five affected Member States (MSs) to establish which species of Culicoides had acted as vectors. The findings can be summarised as follows: (i) C. imicola the principal southern European/African vector of BTV has not penetrated into northern Europe, (ii) three pools of C. obsoletus/C. scoticus and one of C. dewulfi assayed RT-PCR-positive to BTV-8, (iii) in support of these results it was found that both potential vectors had also high parity rates (approximately 40%) indicating increased longevity favouring BTV virogenesis and transmission, (iv) furthermore, C. obsoletus/C. scoticus and C. dewulfi occurred also widely and abundantly on sheep and cattle holdings across the entire affected region, (v) and during the latter part of the season showed strong endophily readily entering livestock buildings in significant numbers to bite the animals inside (endophagy), (vi) which demonstrates that housing at best offers only limited protection to livestock from Culicoides attacks, (vii) in contrast the potential vector C. pulicaris sensu stricto was restricted geographically, was captured rarely, had a low parity rate (10%) and was exophilic indicating it played no role in the outbreak of BT, (viii) the incrimination of C. dewulfi as a novel vector is significant because it breeds in cattle and horse dung this close association raising its vectorial potential, but (ix) problems with its taxonomy (and that of the Obsoletus and Pulicaris species complexes) illustrates the need for morphological and molecular techniques to become more fully integrated to ensure progress in the accurate identification of vector Culicoides, (x) midge densities (as adjudged by light traps) were generally low indicating northern European Culicoides to have a high vector potential and/or that significant numbers of midges are going undetected because they are biting (and transmitting BTV) during the day when light traps are not effective, and (xi) the sporadic capture of Culicoides in the winter of 2007 invites re-examination of the current definition of a vector-free period. The re-emergence of BT over a wide front in 2007 raises anew questions as to precisely how the virus overwinters and asks also that we scrutinise our monitoring systems in terms of their sensitivity and early warning capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号