首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
In many countries ground vegetation and humus type are used as indicators of forest soil quality, especially nutrient regime. This paper reports the development of such methods for use in British forests, within a new Ecological Site Classification combining climate, soil moisture regime and soil nutrient regime.

To develop a field assessment method for soil nutrient regime, a study was made of soil chemistry, humus type and ground vegetation in British forests. Sites were selected in both mature plantations and semi-natural woodlands. Soil and humus profiles were described and the soil was sampled volumetrically for later chemical analysis. Vascular ground vegetation was recorded in quadrats by species cover fraction, and classified according to the existing British National Vegetation Classification. Soils were analyzed for a number of chemical variables. Vegetation data were treated by application of the species indicator values for soil reaction (R) and soil nitrogen (N), as proposed by Ellenberg [Vegetation Ecology of Central Europe, 4th Edition. Cambridge University Press, Cambridge]. Site mean indicator values mR and mN (weighted by species cover fraction) were then calculated. Multivariate statistical analysis techniques were applied to both the soil chemical and the vegetation sample data.

Soil nutrient regime was shown to be a composite gradient of several soil chemical variables, of which the pH value and the availability of mineral (especially nitrate) nitrogen, and of calcium, were of particular importance. The species composition of the ground vegetation was related to position on this soil nutrient gradient. The vegetation: soil nutrient correlation using the site mean Ellenberg values was satisfactory (r=0.89), but was improved by using indicator values generated from within the present data. The occurrence of the major humus types (mor, moder and mull) is broadly related to soil nutrient regime defined in this way. Both ground vegetation and humus type can therefore be used as soil nutrient indicators in British forests.

A division of the soil nutrient gradient into five classes (Very Poor, Poor, Medium, Rich and Very Rich) is proposed. Future sampling work may lead to the definition of an additional class of soils with carbonate nutrient regimes. The Ecological Site Classification will provide forest managers in Great Britain with an improved basis for the selection of tree species for planting, and the adoption of silvicultural methods best suited to the site.  相似文献   


2.
The aim of this work was to investigate differences in soil chemistry and understory composition between recent forests (sites afforested in the last 170 years) and ancient forests growing on non-acidic soils. The study was carried out on hardwood forests at moderate elevation (400–600 m asl) in the Jura Mountains (N.E. France) on four main pedological substrates with different characteristics. The floristic composition of 127 stands from recent forests (n = 65) or ancient forests (n = 62) was surveyed. Some functional traits and the Ellenberg indicator values of the surveyed species were recorded. In addition, the topsoil from 30 stands was analysed. The composition of the flora was analysed by Detrended Correspondence Analysis and the species which were typical of one class of forest age were identified using a chi-square (χ2) test. The difference between forest classes for plant traits, their indicator values, or soil chemistry was tested using the generalized linear model and Bonferroni t-tests (or Kruskall–Wallis tests). The floristic composition of the ancient forests was significantly different from that of the recent forests and was characterized by a high occurrence of shrub species in recent forests. These differences were associated with higher specific leaf area, low-range seeds dispersal, and some life forms like geophytes. There was no clear difference in soil chemistry between the two classes of forests, except for δ15N values. The weakness of the difference in the soil between ancient and recent forests suggested that changes in soil chemistry caused by a former agricultural land use were not responsible for the differences in understory composition recorded. The differences in functional traits between the two forest classes supported this conclusion. We finally concluded that (i) past land use modifies the vegetation composition of current forests, even on neutral soils and that (ii) in our context, biological filters were probably responsible for these changes.  相似文献   

3.
According to the requirements of the conversion of farmland to forests project (CFFP), we investigated the vegetation factors and environmental factors from more than 6,105 sub-compartments in Liangcheng County, Inner Mongolia by using the Matlab, analytic hierarchy process (AHP), and the hierarchical cluster method (HCM). The site conditions were classified quantitatively. The results show that CFFP at this site comprises five site-type groups and 19 site types. A quantitative site classification system method has been established in this paper. __________ Translated from Journal of Beijing Forestry University, 2005, 27(6) [译自: 北京林业大学学报, 2005, 27(6)]  相似文献   

4.
The relationship between soil properties and forest site quality was investigated. The site quality functions currently used fail in predicting variations within regions and the purpose of this study was to evaluate if the local accuracy in forest resource assessments could benefit from the use of geological and geochemical data. The investigation was conducted in mid-Sweden within two geological regions. The mineralogy of the parent material (C horizon) was estimated using a method for normative mineralogical assessment and the soil chemistry was determined for five soil horizons. The importance of individual minerals for site quality was different within the two geological regions. Functional relations were established between the properties in different soil horizons and site index. The functions between mineralogy and site index were improved by splitting the data according to the geologically different regions. The mineralogy explained 37–61% of the variation in site index, whereas the properties in the upper soil profile (O–B horizon) related more strongly to site index (18–80%). Stronger relations could be established in the mineralogically rich than in the mineralogically poor area.  相似文献   

5.
The intensive nature of management practices in the exotic monoculture plantations of South Africa requires reliable decision support systems. Recent socio-economic developments, the need for optimal forest productivity, as well as increasing awareness of broader ecosystem values and environmental risks, highlight the importance of a unified approach to forest site classification and evaluation. This paper highlights the value of specific soil characteristics and its application value for a range of silviculture and management aspects related to site-specific forestry. A limited set of six soil variables are proposed for ecological mapping of forest landscapes at high-resolution operational-level scales. The variables proposed are parent material, soil classification, effective soil depth, depth limiting material, topsoil organic matter and topsoil texture. Each variable is discussed in terms of its significance as well as relevance to plantation forestry in South Africa. Shortcomings in our knowledge base and research requirements are highlighted, and the format of incorporation into a national forest site classification system is proposed. This paper will contribute to unity of purpose and understanding of forest site classification and evaluation in South Africa, and will promote management frameworks and decision support systems with desired environmental, economic and social benefits.  相似文献   

6.
不同土地利用方式对土壤有机碳、氮含量的影响   总被引:3,自引:0,他引:3  
土壤有机C、N的定量动态变化是评价不同土地利用方式对土壤质量影响的重要内容。本文比较了研究地区种植黑麦草(Lolium multiflorum Lam.)、百喜草(Paspalum notatum Flugge.)、桔树(Citrus reticulata Blanco.)和马尾松(Pinus Massoniana Lamb.)的四种土地利用方式对植物生物量和土壤有机C、N多年变化的影响。试验初期,四种土地利用方式的植物生物量几乎处于同一水平。经过10年长期试验后,黑麦草和百喜草的累计生物量分别是桔树的3.68和3.75倍,马尾松的2.06和2.14倍。地下部生物量的差异更为明显,黑麦草和百喜草两种草类地下部累计生物量都较桔树和马尾松高10倍之多。这表明草类较之乔木更有利于提高土壤有机C、N的含量。土壤有机C、N的含量变化主要发生在0.40cm土层。统计计算表明,10年期问,种植黑麦草和百喜草可使土壤有机C、N贮量每公顷分别约增加1.5吨和0.2吨,而种植桔树使土壤有机C、N贮量每公顷分别约减少1.2吨和0.02吨,种植马尾松使土壤有机C、N贮量每公顷分别约减少0.4吨和0.04吨。表4参10。  相似文献   

7.
Soil organic matter (SOM) has been adopted as an indicator of soil fertility based on the rationale that SOM contributes significantly to soil physical, chemical, and biological properties that affect vital ecosystem processes of forests in Australia. A study was undertaken to evaluate the utility of SOM as an indicator of SFM at two long-term experimental sites in native eucalypt forests, including Silvertop Ash (E. sieberi L. Johnson) and Mountain Ash (E. regnans F. Muell.) in Victoria. This study examines the relative contributions made by various sources of carbon in soil profiles (0–30 cm) of forest soils, viz. mineral soil (<2 mm), plant residues, charcoal (>2 mm), and rock fragments (>2 mm). The long-term changes in these fractions in response to management-induced soil physical disturbance and fire (unburnt, moderate and high intensity) were evaluated. After 10 years, carbon levels in the fine soil fraction (soil <2 mm including fine charcoal) were similar across the range of fire disturbance classes in Mountain Ash forest (20–25 kg/m2) and Silvertop Ash forest (7–8 kg/m2). Likewise differences in carbon associated with other fractions, viz. microbial biomass, labile carbon, plant residues and rock fragments were comparatively small and could not be attributed to fire disturbance. Burning increased the charcoal carbon fraction from 5 to 23 kg/m2 in Mountain Ash forest and from 1 to 3 kg/m2 in Silvertop Ash forest. Taking into account, the percentage area affected by fire, increases in total soil carbon in these forests were estimated at 25 and 7 t/ha, respectively.

The effects of physical disturbance of soils were examined at one site in Mountain Ash forest where soil cultivation was used as site preparation rather than the standard practice of burning of logging residues. Total carbon in soil profiles decreased from 29 to 21 kg/m2 where soil disturbance was severe, i.e. topsoil removed and subsoil disturbed. This was mainly due to a decrease in charcoal carbon from 6.8 to 1.7 kg/m2 but severe soil disturbance also increased the amount of carbon associated with rock fragments from 1.6 to 3.5 kg/m2.

Management-induced fire increased the coarse charcoal content of soil profiles substantially, thus increasing total carbon content as well as the proportion of recalcitrant carbon in SOM. In contrast, there was little change in the carbon content of the fine soil fraction including the labile and biologically active fractions indicating that these SOM fractions most relevant to ecosystem processes showed little long-term impact from soil disturbance and fire. Conventional sampling of the fine soil fraction (<2 mm) only represented between 50% and 70% of total carbon in the soil profiles. In contrast, total nitrogen in this fraction represented between 75% and 90% of the nitrogen in soil profiles and was less affected by changes in the contributions of N made by coarse fractions. Monitoring of soil N rather than C as an indicator of soil fertility and SFM may be more appropriate for forest soils with significant charcoal content.  相似文献   


8.
Digital terrain modeling was used to evaluate landscape-level spatial variation of soil C and N storage and site productivity in Japanese cedar (Cryptomeria japonica D. Don) stands. Soil C and N storage were measured in samples from surface soils (0–25 cm depth) of 29 Japanese cedar stands in the 205-ha Myougodani watershed, Toyama Prefecture. The site index (C. japonica tree height at age 40 years) was used as a measure of forest productivity. Seven terrain attributes (elevation, slope gradient, aspect, profile curvature, plan curvature, openness, and wetness index) were calculated from a digital elevation model. Soil C and N storage were negatively correlated with slope gradient and positively correlated with openness. Variation in the site index was closely related to the wetness index. The prediction models using terrain attributes as explanatory variables explained 50% of the variability in soil C storage, 53% of the variability in soil N storage, and 75% of the variability in site index. This result demonstrated that this technique is useful for estimating the spatial distribution of soil properties and productivity in forest landscapes. On the other hand, there was no correlation between site index and soil C and N storage. Use of the prediction models in a geographic information system revealed that the spatial distribution of forest productivity differed considerably from those of soil C and N storage.  相似文献   

9.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

10.
Based on the plot data from the investigation and the theory of forest ecology and ecological system, the site classification of the eastern forest region of Daxing’an Mountains was made by mean of mathematical method. The main factors were slope, thickness of soil layer, slope position and slope aspect. Grades of slope were used as the division standard for site type group. The slope aspect, slope position and thickness of soil layer were used as the division standards for site type. Altogether 7 site type groups and 15 main site types were determined the region. It provided reliable fundamental basis for the reasonable management and planting design in the area. Responsible editor: Zhu Hong  相似文献   

11.
The vertical variation and storage of nitrogen in the depth of 0–150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4 +-N) and nitrate (NO3 -N). The sequence of STN storage was woodland>maize field>fallow field>paddy field, while that of NO3 -N content was maize field>paddy field>woodland>fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0–100 cm of woodland averaged to 11.41 t·hm−1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respectively, while there was no significant difference between maize and fallow fields. The comparatively higher amount NO3 -N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R 2≥0.929,p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3 -N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection. Foundation item: The project was supported by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-413-9) and Fund of Shenyang Experimental Station of Ecology, CAS (STZ0204) Biography: ZHANG Yu-ge, (1968-), female, Ph.D. candidate, associate research fellow in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China. Responsible editor: Song Funan  相似文献   

12.
潮棕壤不同利用方式土壤氮的垂直变化及氮储量   总被引:11,自引:0,他引:11  
对中国科学院沈阳生态实验站潮棕壤在水稻田、玉米地、撂荒地和林地等经过14年不同利用方式后0-150cm各土层(2003年11月取样)N的剖面分布及N储量进行研究的结果表明不同利用方式下土壤全N、碱解N、NH4+-N和NO3--N含量发生明显的剖面差异;土壤N储量为林地>玉米地>撂荒地>水稻田,NO3--N含量为玉米地>水稻田>林地>撂荒地,说明不同利用方式下生物量差异及N的生物循环对N行为的影响。100cm深度林地土壤平均N储量为11.41t穐m-2,分别是水稻田和玉米地土壤的1.65和1.25倍,而玉米地和撂荒地的土壤N储量无显著差异。玉米地和水稻田相对较高的NO3--N含量可能由于过量施用N肥和人为干扰所致。土壤碱解N与全N含量呈线性正相关关系(R20.929,p<0.001),而自然生态系统(林地和撂荒地)中的相关性略高于农田生态系统(水稻田和玉米地)。过量施用N肥还导致耕地土壤中比撂荒地和林地积累更多的NO3--N。研究结果表明,农林复合系统对于作物生产和环境保护具有重要的潜在贡献。图2表5参23。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号