首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have demonstrated the potential importance of using soil texture to modify fertilizer N recommendations. The objective of this study was to determine (i) if surface clay content can be used as an auxiliary variable for estimating spatial variability of soil NO3–N, and (ii) if this information is useful for variable rate N fertilization of non-irrigated corn [Zea mays (L.)] in south central Texas, USA across years. A 64 ha corn field with variable soil type and N fertility level was used for this study during 2004–2007. Plant and surface and sub-surface soil samples were collected at different grid points and analyzed for yield, soil N parameters and texture. A uniform rate (UR) of 120 kg N ha−1 in 2004 and variable rates (VAR) of 0, 60, 120, and 180 kg N ha−1 in 2005 through 2007 were applied to different sites in the field. Distinct yield variation was observed over this time period. Yield and soil surface clay content and soil N parameters were strongly spatially structured. Corn grain yield was positively related to residual NO3–N with depth and either negatively or positively related to clay content depending on precipitation. Residual NO3–N to 0.60 and 0.90 m depths was more related to corn yield than from shallower depths. The relationship of clay content with soil NO3–N was weak and not temporally stable. Yield response to N rate also varied temporally. Supply of available N with depth, soil texture and growing season precipitation determined proper N management for this field.  相似文献   

2.
Spring barley was grown for 4 years (2001–2004) in field trials at two sites on morainic soil in central SE Norway, with five N level treatments: 0, 60, 90, 120 and 150 kg N ha-1. Regression analyses showed that a selection of soil properties could explain 95–98% of the spatial yield variation and 47–90% of the yield responses (averaged over years). A strategy with uniform fertilizer application of 120 kg N ha−1 (U N120) was compared with two variable-rate (VR) strategies, with a maximum N rate of either 150 kg N ha−1 (VRN150) or 180 kg N ha−1 (VRN180). These strategies were tested using either Norwegian prices (low price ratio of N fertilizer to yield value; PN/PY), or Swedish prices (high PN/PY). The VRN180 strategy had the highest potential yield and net revenue (yield value minus N cost) at both sites and under both price regimes. Using this strategy with Norwegian prices would increase the profit of barley cropping as long as at least 40 and 31% of the estimated potential increase in net revenue was realized, respectively. Using Swedish prices, uniform application appeared to be as good as or even better economically than the VR methods, when correcting for extra costs of VR application. The environmental effect of VR compared with uniform application, expressed as N not accounted for, showed contrasting effects when using Norwegian prices, but was clearly favourable using Swedish prices, with up to 20% reduction in the amount of N not accounted for.  相似文献   

3.
Spatial and temporal variability of soil nitrogen (N) supply together with temporal variability of plant N demand make conventional N management difficult. This study was conducted to determine the impact of residual soil nitrate-N (NO3-N) on ground-based remote sensing management of in-season N fertilizer applications for commercial center-pivot irrigated corn (Zea mays L.) in northeast Colorado. Wedge-shaped areas were established to facilitate fertigation with the center pivot in two areas of the field that had significantly different amounts of residual soil NO3-N in the soil profile. One in-season fertigation (48 kg N ha−1) was required in the Bijou loamy sand soil with high residual NO3-N versus three in-season fertigations totaling 102 kg N ha−1 in the Valentine fine sand soil with low residual NO3-N. The farmer applied five fertigations to the field between the wedges for a total in-season N application of 214 kg N ha−1. Nitrogen input was reduced by 78% and 52%, respectively, in these two areas compared to the farmer’s traditional practice without any reductions in corn yield. The ground-based remote sensing management of in-season applied N increased N use efficiency and significantly reduced residual soil NO3-N (0–1.5 m depth) in the loamy sand soil area. Applying fertilizer N as needed by the crop and where needed in a field may reduce N inputs compared to traditional farmer accepted practices and improve in-season N management.  相似文献   

4.
Hyperspectral visible near infrared reflectance spectroscopy (VNIRRS) and geostatistical methods are considered for precision soil mapping. This study evaluated whether VNIR or geostatistics, or their combined use, could provide efficient approaches for assessing the soil spatially and associated reductions in sample size using soil samples from a 32 ha area (800 × 400 m) in northern Turkey. Soil variables considered were CaCO3, organic matter, clay, sand and silt contents, pH, electrical conductivity, cation exchange capacity (CEC) and exchangeable cations (Ca, Mg, Na and K). Cross-validation was used to compare the two approaches using all grid data (n = 512), systematic selections of 13, 25 and 50% of the data and random selections of 13 and 25% for calibration; the remaining data were used for validation. Partial least squares regression (PLSR) analysis was used for calibrating soil properties from first derivative VNIR reflectance spectra (VNIRRS), whereas ordinary-, co- and regression-kriging were used for spatial prediction. The VNIRRS-PLSR method provided better prediction results than ordinary kriging for soil organic matter, clay and sand contents, (R 2 values of 0.56–0.73, 0.79–0.85, 0.65–0.79, respectively) and smaller root mean squared errors of prediction (values of 2.7–4.1, 37.4–43, 46.9–61, respectively). The EC, pH, Na, K and silt content were predicted poorly by both approaches because either the variables showed little variation or the data were not spatially correlated. Overall, the prediction accuracy of VNIRRS-PLSR was not affected by sample size as much as it was for ordinary kriging. Cokriging (COK) and regression kriging (RK) were applied to a combination of values predicted by VNIR reflectance spectroscopy and measured in the laboratory to improve the accuracy of prediction of the soil properties. The results showed that both COK and RK with VNIRRS estimates improved the predictions of soil variables compared to VNIRRS and OK. The combined use of VNIRRS and multivariate geostatistics results in better spatial prediction of soil properties and enables a reduction in sampling and laboratory analyses.  相似文献   

5.
Using the pot experiment and closed static chamber-gas chromatography (GC) technique, this paper studied the effects of nitrogen application (150 and 300 mg/kg soil) and maize growth on N2O emission from soil. In maize-planted soil, the N2O emission rate increased with increasing N application rate, its peak appeared at the seedling stage, and there was no significant correlation between N2O emission rate and air temperature. Contrarily, in exposed soil, the peak of N2O emission rate occurred at the later stages of the experiment, and there was a significant exponential correlation between soil N2O emission rate and air temperature, in which Q 10 (the value of soil N2O emission rate responding to temperature) was 4.4 and 3.2 in high and low N applications. The total amount of N2O emission increased remarkably with increased N application rate in both planted and un-planted soils. N2O emission inventory from exposed and maize-planted soils in high N application was 2.5 and 1.6 times as high as that in low N application, respectively. In the same N application rate, N2O emission inventory in high and low N application from exposed soil was 12 and 7.5 times as high as that from maize-planted soil, respectively. As compared with exposed soil, maize growth reduced N2O emission by 92% and 87%, respectively, at high and low N application rates. In summary, maize growth and nitrogen application not only affected the seasonal variation and magnitude of N2O emission from soil, but also altered the relationship between air temperature and soil N2O emission. __________ Translated from Chinese Journal of Applied Ecology, 2005, 16(1): 100–104 [译自: 应用生态学报]  相似文献   

6.
A fuzzy inference system (FIS) was developed to generate recommendations for spatially variable applications of N fertilizer. Key soil and plant properties were identified based on experiments with rates ranging from 0 to 250 kg N ha−1 conducted over three seasons (2005, 2006 and 2007) on fields with contrasting apparent soil electrical conductivity (ECa), elevation (ELE) and slope (SLP) features. Mid-season growth was assessed from remotely sensed imagery at 1-m2 resolution. Optimization of N rate by the FIS was defined against maximum corn growth in the weeks following in-season N application. The best mid-season growth was in areas of low ECa, high ELE and low SLP. Under favourable soil conditions, maximum mid-season growth was obtained with low in-season N. Responses to N fertilizer application were better where soil conditions were naturally unfavourable to growth. The N sufficiency index (NSI) was used to judge plant N status just prior to in-season N application. Expert knowledge was formalized as a set of rules involving ECa, ELE, SLP and NSI levels to deliver economically optimal N rates (EONRs). The resulting FIS was tested on an independent set of data (2008). A simulation revealed that using the FIS would have led to an average N saving of 41 kg N ha−1 compared to the recommended uniform rate of 170 kg N ha−1, without a loss of yield. The FIS therefore appears to be useful for incorporating expert knowledge into spatially variable N recommendations.  相似文献   

7.
One of the many gaps that needs to be solved by precision agriculture technologies is the availability of an economic, automated, on-the-go mapping system that can be used to obtain intensive and accurate ‘real-time’ data on the levels of nitrate nitrogen (NO3–N) in the soil. A soil nitrate mapping system (SNMS) has been developed to provide a way to collect such data. This study was done to provide extensive field-scale validation testing of the system’s nitrate extraction and measurement sub-unit (NEMS) in two crop (wheat and carrot) production systems. Field conditions included conventional tillage (CT) versus no tillage (NT), inorganic versus organic fertilizer application, four soil groups and three points in time throughout the season. Detailed data analysis showed that: (i) the level of agreement, as measured by root mean squared error (RMSE), mean absolute error (MAE) and coefficient of efficiency (CE), between NEMS soil NO3–N and standard laboratory soil NO3–N measurements was excellent; (ii) at the field-scale, there was little practical difference when using either integer or real number data processing; (iii) regression equations can be used to enable field measurements of soil NO3–N using the NEMS to be obtained with laboratory accuracy; (iv) future designs of the SNMS’s control system can continue to use cheaper integer chip technology for processing the nitrate ion-selective electrode (NO3 –ISE) readings; and (v) future designs of the SNMS would not need a soil moisture sensor, ultimately saving on manufacturing costs of a more simple system.  相似文献   

8.
We examined the spatial structure of fruit yield, tree size, vigor, and soil properties for an established pear orchard using Moran’s I, geographically weighted regression (GWR) and variogram analysis to determine potential scales of the factors affecting spatial variation. The spatial structure differed somewhat between the tree-based measurements (yield, size and vigor) and the soil properties. Yield, trunk cross-sectional area (TCSA) and normalized difference vegetation index (NDVI, used as a surrogate for vigor) were strongly spatially clustered as indicated by the global Moran’s I for these measurements. The autocorrelation between trees (determined by applying a localized Moran’s I) was greater in some areas than others, suggesting possible management by zones. The variogram ranges for TCSA and yield were 30–45 m, respectively, but large nugget variances indicated considerable variability from tree to tree. The variogram ranges of NDVI varied from about 14–27 m. The soil properties copper, iron, organic matter and total exchange capacity (TEC) were spatially structured, with longer variogram ranges than those of the tree characteristics: 31–95 m. Boron, pH and zinc were not spatially correlated. The GWR analyses supported the results from the other analyses indicating that assumptions of strict stationarity might be violated, so regression models fitted to the entire dataset might not be fitted optimally to spatial clusters of the data.  相似文献   

9.
10.
Application of nitrogen (N) fertilizer is one of the most important measures that increases grain yield and improves grain quality in winter wheat (Triticum aestivum L.) production. Presently, there is a large number of investigations (experiments) in the field on different nitrogen fertilizer application regimes. However, there still exists a serious problem of low nitrogen use efficiency, especially in winter wheat high yield conditions: unsuitable nitrogen fertilizer, which often leads to lower yield and large accumulation of nitrate in the soil, bringing a potential risk to the environment. In order to explore the optimal regime of nitrogen fertilizer application suitable for environment and economy, a field experiment on the different rate and ratio of base and topdressing of nitrogen fertilizer at the different growth periods of winter wheat was conducted. The field experiment was undertaken from the fall of 2003 to the summer of 2004 in the village of Zhongcun in Longkou city, in the Shandong Province of China. The field experiment with three repeats for each treatment was designed in a split-plot. The major plot was applied with urea at a nitrogen fertilizer rate of three levels, namely, 0 kg·hm−2 (CK), 168 kg·hm−2 (A), and 240 kg·hm−2 (B). In the sub-plot, the ratios of base and topdressing nitrogen fertilizer at the different development periods of wheat were 1/2:1/2 (A1 and B1), 1/3:2/3 (A2 and B2) and 0:1 (A3 and B3). Treatment B1 was under a regime used now in the local region. It was found that the amount of N accumulation in plants had no significant difference between treatments applied with nitrogen fertilizer. The grain yield and grain protein content were all elevated remarkably by applying nitrogen fertilizer compared with those of treatment CK. There was no significant difference in the grain yield and grain protein content between A2 and B2 and B3. However, when compared with those of B2 and B3, in A2 there was an increase in nitrogen use efficiency and residual soil NO3 -N and N losses were reduced. Under the condition of the same rate of nitrogen fertilizer, increasing topdressing nitrogen rate clearly elevated the grain yield, grain protein content and nitrogen use efficiency. The results indicated that the residual soil NO3 -N in A1 and B1 accumulated higher than that of CK in 80–160 cm soil layers at the jointing stage, but that of A2 had no significant difference compared with that of CK in 0–200 cm soil layers. At the maturity stage, more residual soil NO3 -N was detected in B2, B3 and A3 than that in CK in 120–180 cm soil layers, which could not be absorbed by the roots of wheat, but led to be eluviated easily. The amount of soil NO3 -N accumulation in treatment A2 had no significant difference compared with that of treatment CK in the 100–200 cm soil layer. In conclusion, A2, whose nitrogen fertilizer rate was 168 kg·hm−2 and the ratio of base and topdressing was 1/3:2/3, had a higher grain yield and grain protein content, and heightened N use efficiency and minimized the risk of NO3 -N leaching. This should be one of the most appropriate nitrogen fertilizer application regimes in wheat production in local regions in China. __________ Translated from Acta Ecologica Sinica, 2006, 26(11): 3661–3669 [译自: 生态学报]  相似文献   

11.
Site-specific soil management can improve profitability and environmental protection of citrus groves having large spatial variation in soil and tree characteristics. The objectives of this study were to identify soil factors causing tree performance decline in a variable citrus grove, and to develop soil-specific management zones based on easily measured soil/tree parameters for variable rate applications of appropriate soil amendments. Selected soil properties at six profile depths (0–1.5 m), water table depth, ground conductivity, leaf chlorophyll index, leaf nutrients and normalized difference vegetation index were compared at 50 control points in a highly variable 45-ha citrus grove. Regression analysis indicated that 90% of spatial variation in tree growth, assessed by NDVI, was explained by average soil profile properties of organic matter, color, near-infrared reflectance, soil solution electrical conductivity, ground conductivity and water table depth. Regression results also showed that soil samples at the surface only (0–150 mm) explained 78% of NDVI variability with NIR and DTPA-extractable Fe. Excessive available copper in low soil organic matter areas of the grove apparently induced Fe deficiency, causing chlorotic foliage disorders and stunted tree growth. The semivariograms of selected variables showed a strong spatial dependence with large ranges (varied from 230 m to 255 m). This grove can be divided into different management zones on the basis of easily measured NDVI and/or soil organic matter for variable rate application of dolomite and chelated iron to improve tree performance.  相似文献   

12.
Many hyperspectral vegetation indices (VIs) have been developed to estimate crop nitrogen (N) status at leaf and canopy levels. However, most of these indices have not been evaluated for estimating plant N concentration (PNC) of winter wheat (Triticum aestivum L.) at different growth stages using a common on-farm dataset. The objective of this study was to evaluate published VIs for estimating PNC of winter wheat in the North China Plain for different growth stages and years using data from both N experiments and farmers’ fields, and to identify alternative promising hyperspectral VIs through a thorough evaluation of all possible two band combinations in the range of 350–1075 nm. Three field experiments involving different winter wheat cultivars and 4–6 N rates were conducted with cooperative farmers from 2005 to 2007 in Shandong Province, China. Data from 69 farmers’ fields were also collected to evaluate further the published and newly identified hyperspectral VIs. The results indicated that best performing published and newly identified VIs could explain 51% (R700/R670) and 57% (R418/R405), respectively, of the variation in PNC at later growth stages (Feekes 8–10), but only 22% (modified chlorophyll absorption ratio index, MCARI) and 43% (R763/R761), respectively, at the early stages (Feekes 4–7). Red edge and near infrared (NIR) bands were more effective for PNC estimation at Feekes 4–7, but visible bands, especially ultraviolet, violet and blue bands, were more sensitive at Feekes 8–10. Across site-years, cultivars and growth stages, the combination of R370 and R400 as either simple ratio or a normalized difference index performed most consistently in both experimental (R 2 = 0.58) and farmers’ fields (R 2 = 0.51). We conclude that growth stage has a significant influence on the performance of different vegetation indices and the selection of sensitive wavelengths for PNC estimation, and new approaches need to be developed for monitoring N status at early growth stages.  相似文献   

13.
In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0–161 kg N ha−1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work.  相似文献   

14.
Maximum benefit of a precise nitrogen application system for wheat   总被引:1,自引:0,他引:1  
Research is ongoing to develop sensor-based systems to determine crop nitrogen needs. To be economic and to achieve wide adoption, a sensor-based site-specific application system must be sufficiently efficient to overcome both the cost disadvantage of dry and liquid sources of nitrogen relative to applications before planting of anhydrous ammonia and possible losses if weather prevents applications during the growing season. The objective of this study is to determine the expected maximum benefit of a precision N application system for winter wheat that senses and applies N to the growing crop in the spring relative to a uniform system that applies N before planting. An estimate of the maximum benefit would be useful to provide researchers with an upper bound on the cost of delivering an economically viable precision technology. Sixty five site-years of data from two dryland winter wheat nitrogen fertility experiments at experimental stations in the Southern Plains of the U.S.A. were used to estimate the expected returns from both a conventional uniform rate anhydrous ammonia (NH3) application system before planting and a precise topdressing system to determine the value of the latter. For prices of $0.55 and $0.33 kg−1 N for urea-ammonium nitrate (UAN) and NH3, respectively, the maximum net value of a system of precise sensor-based nitrogen application for winter wheat was about $22–$31 ha−1 depending upon location and assumptions regarding the existence of a plateau. However, for prices of $1.10 and $0.66 kg−1 N for UAN and NH3, respectively, the value was approximately $33 ha−1. The benefit of precise N application is sensitive to both the absolute and relative prices of UAN and NH3.This is journal paper AEJ-260 of the Oklahoma Agricultural Experiment Station, project H-2574.  相似文献   

15.
The contents of soil organic C (SOC), total N (TN), total P (TP), dissolved N (DN), Olsen-P, and microbial biomass C, N, P (BC, BN, BP) of 254 paddy soils (0–18 cm in depth) in a hilly red soil region of subtropical zone of China were studied. The results showed that the contents of SOC, TN, BC, BN and DN of paddy soils at the bottom of hills were 14.6%, 13.6%, 24.6%, 20.4% and 95.8% higher than those at the foothill, respectively. The Olsen-P content of paddy soils at the foothill was 33.3% higher than that at the bottom of hills. However, the differences in TP, BP and available P (the sum of BP and Olsen-P) contents were not significant between the two positions. In addition, the ratios of soil C/P, BC/BP and BC/SOC of paddy soils at the bottom of hills were 12.7%, 28.5% and 8.2% higher than those at the foothill, respectively, but the differences in ratios of soil C/N, BC/BN, BN/TN and BP/TP were not statistically significant between various positions. __________ Translated from Plant Nutrition and Fertilizer Science, 2007, 13(1): 15–21 [译自: 植物营养与肥料学报]  相似文献   

16.
减肥条件下生物炭施用方式对土壤肥力及酶活性的影响   总被引:2,自引:1,他引:1  
为研究生物炭逐年施加和一次性施入4年后对土壤肥力和酶活性的影响,采用定位试验设置100%(F1)、80%(F2)和60%(F3)推荐施肥量的三种施肥水平×四种施炭量(CK:0 t·hm-2,B1:2.6 t·hm-2·a-1,B2:13 t·hm-2,B3:26 t·hm-2)共12个处理,分析土壤氮磷钾养分含量和酶活性指标的变化,其中B1处理逐年施加,B2和B3处理一次性施加。结果表明生物炭对土壤氮素提高效果显著,其中全氮含量较对照处理提高23.08%~52.25%,硝态氮含量是对照的1.80~2.46倍,并随施炭量提高而增加,提升效果优于铵态氮。60%推荐施肥条件下,施加13 t·hm-2和26 t·hm-2生物炭土壤速效磷含量分别高于不施炭对照84.99%和159.23%。土壤全钾含量未因生物炭加入发生显著变化,但是速效钾含量较对照提高了18.99%~61.24%。土壤酶活性主要受生物炭施加方式的影响:逐年施加生物炭(B1)显著提高了酸性磷酸酶活性,但降低了土壤脲酶和过氧化氢酶活性,而一次性施炭可提高土壤脲酶活性。研究表明,生物炭对土壤氮磷肥力和速效钾肥力均有一定的提升效果,其中对氮素的提高效果最理想,可弥补减肥40%引起的土壤氮素降低。逐年施炭对土壤酶活性影响显著,新鲜生物炭中所含物质是影响酶活性的主要因素。  相似文献   

17.
在内蒙古贝加尔针茅草原,分别设对照(N0)、1.5 g·m-2(N15)、3.0 g·m-2(N30)、5.0 g·m-2(N50)、10.0 g·m-2(N100)、15.0 g·m-2(N150)、20.0 g·m-2(N200)和30g·m-2(N300)(不包括大气沉降的氮量)8个氮素(NH4NO3)梯度和模拟夏季增加降水100 mm的水分添加交互试验,研究氮素和水分添加对草原土壤养分、酶活性及微生物量碳氮的影响。结果表明:氮素和水分添加对草原土壤理化性质和生物学特性有显著影响。随施氮量的增加土壤总有机碳、全氮、硝态氮、铵态氮含量呈增加的趋势,相反,土壤pH值呈降低的趋势。土壤脲酶和过氧化氢酶的活性随施氮量的增加而升高,多酚氧化酶则随施氮量的增加呈下降的趋势。氮素和水分添加对草原土壤微生物量碳氮含量有显著影响,高氮处理(N150、N200和N300)显著降低了微生物碳含量,微生物氮含量随施氮量的增加呈上升趋势。水分添加能够减缓氮素添加对微生物的抑制作用,提高微生物量碳、微生物量氮含量。草原土壤养分、土壤酶活性及土壤微生物量碳氮含量间关系密切,过氧化氢酶与全氮、总有机碳、硝态氮呈显著正相关,多酚氧化酶与铵态氮、硝态氮、全氮呈显著负相关。微生物量氮含量与土壤全氮、铵态氮、硝态氮含量以及过氧化氢酶和磷酸酶活性呈显著正相关,与多酚氧化酶呈负相关;微生物量碳与过氧化氢酶呈负相关,与多酚氧化酶活性呈正相关。  相似文献   

18.
A two-year trial was conducted to test the interactive effects of special-for-apple organic fertilizer, CaSO4, and amino acid Ca on Fuji/Balenghaitang (Malus robusta Rehd.) rootstock in Burozem soil in China. Total Ca, exchangeable Ca, and fruit Ca were significantly improved by the soil application of CaSO4 with the highest exchangeable Ca and fruit Ca observed in Fuji apple trees treated at the rate of 3.5 kg CaSO4 per tree. 3.5 kg CaSO4 was divided into two applications, with first application in the first month after full bloom, and the second in the second month after full bloom in summer, progressively to improve fruit Ca concentration. Dividing CaSO4 into two applications in combination with organic fertilizer or amino acid Ca spray, proved to be more effective on improving the fruit Ca concentration, with the highest level of 179.17 mg/kg FW in Fuji apple trees treated with 2 kg CaSO4 applied and amino acid Ca sprayed in the first month after full bloom, 1.5 kg CaSO4 applied in summer, organic fertilizer applied in winter. Organic fertilizer applied in winter alone remarkably improved the fruit Ca concentration, as well as storage Ca in roots and stems, and the best effect was observed in Fuji apple trees which were supplemented organic fertilizer (10 kg) in winter and CaSO4 (1 kg) in the first month after full bloom per tree. The effect on Ca increment became less pronounced when the amount of organic fertilizer reached 15 kg or CaSO4 was more than 3.5 kg per tree. There was a positive correlation between the Ca/Mg ratio in soil and fruit, exchangeable Ca, and fruit Ca concentration, while a negative correlation was observed between the N/Ca ratio in fruit, available P, available K in soil, and fruit Ca concentration. Both N/Ca ratio and Ca/Mg ratio in fruit were affected by different fertilization regime, and bitter pit incidence at the end of storage kept acceptable only if N/Ca < 17 and Ca/Mg ≥ 7 at harvest. The commercial fertilization regime turned out to be organic fertilizer in combination with CaSO4 applied in soil in winter, amino acid Ca sprayed in the first month after full bloom, and CaSO4 applied in soil in summer. __________ Translated from Journal of Fruit Science, 2007, 24(1): 6–10 [译自: 果树学报]  相似文献   

19.
Citrus growing is regarded as an important cash crop in some regions of China. A geographic information system (GIS) was used to investigate the growing conditions of citrus orchards in Chongqing, China. Digital maps on topography, land use, soil types and climate were obtained and a digital elevation model (DEM) was produced at a scale of 1:10 000 using a GIS. A total of 50 representative orchards (2032 ha) were examined and extensive investigation were carried out in the summer of 2007. Topographic characteristics of the orchards studied were determined using the DEM. About 53% of the total area covered by the orchards has slopes of 8–25° and 4.4% has slopes steeper than 35°. The orchards were dominantly on south-facing slopes (42%). About 80% of the orchards were within 200–400 m in altitude. The orchards were mainly on soil developed on purple shale and limestone (86 and 14% of the total area, respectively). About 42% of the area has soil with a pH of less than 5.5. The majority of the study area (60%) has soil with organic matter contents of 1–2%. General guidelines for sustainable citrus production are proposed based on the topography and soil properties of the citrus orchards. The result of regional planning indicates that about one-third of the total area of Chongqing is suitable for citrus growth (2.68 × 106 ha). A GIS-based database management system provides a new perspective on the management and planning of citrus orchards in Chongqing.  相似文献   

20.
The objective of this research was to assess the effect of soil cracks on soil moisture distribution under various sprinkler irrigation applications and to identify the optimal irrigation strategy that enhances soil moisture distribution and reduces water drainage for the upper soil layer 0–250 mm. The assessment was made for six irrigation events: the first two were for 10 and 46 mm water applications using a hand shift-set sprinkler system. The second set was for 43 and 19 mm water applications using the lateral move system with fixed sprayer heads and the third pair of events were for 43 and 32 mm water applications using the lateral move system with rotating sprinklers. The experiments were conducted on two adjacent fields at the University of Queensland, Gatton, Australia. Each field was divided into 2 m × 2 m grids that covered 62 sampling locations. For each event, the initial soil moisture content (SMC) was measured at each sampling location before irrigation. After irrigation, catch can readings were recorded for each sampling location. After 12 h overnight, the second set of soil moisture measurements was taken at each location. The area1 distribution of SMC for the studied applications was quantified. An attempt was made to identify the relationship between the applied water uniformity using catch cans and the soil moisture uniformity using gravimetric water content measurements. The study also took into consideration variables that could affect the soil physical and hydrological properties including the field slope, the soil texture, the infiltration rate, the salt content and the soil organic matter content of the two fields. Since the soils were cracking clay Vertisols, further analyses were conducted on the crack dynamics, size and distribution using image analysis techniques. The research findings demonstrated that the cracks were the main contributors to water drainage below 250 mm soil depth due to the micro-run off from the crust surface to the cracks. The cracks ranged from a few millimeters to more than 40 mm in width. It was observed that the cracks which were wider than 15 mm remained open after irrigation for the specified application rates. Improving the irrigation system application uniformity did not always result in higher uniformity of the surface SMC (0–250 mm). The event that best enhanced soil moisture distribution and thus improved soil moisture recharging was observed after the sixth irrigation event when the field received 32 mm water application. The soil was at a relatively high initial SMC of 25%, (which represented 43.3% of the plant available water range) and the sprinkler water uniformity was rather high above 87% Christiansen coefficient of uniformity (CUc). At this SMC, the extent of soil cracking is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号