首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Increasing agricultural efficiency in a sustainable manner will contribute to feed a growing population under limited land, nutrient and water resources. Water scarcity and the increasing social concern for this resource are already requiring more sophisticated irrigation and decision-support systems. To address the heterogeneity in crop water status in a commercial field, precision irrigation requires accurate information about crops (e.g., crop water status), soil (e.g., moisture content) and weather (e.g., wind speed and vapor pressure deficit). Numerous studies have shown that plant canopy temperature can be used to derive reliable plant water stress indicators, thus making it a promising tool for irrigation water management. However, efficient and cost-effective measurement techniques are still lacking. This paper assesses the potential of infrared thermometry and thermal imaging for monitoring plant water stress in a commercial sugar beet field by comparing canopy temperature data acquired from a conventional thermal camera with an inexpensive infrared sensor, both mounted on a rotary-wing unmanned aerial vehicle (UAV). Measurements were taken at various phenological stages of the sugar beet growing season. Laboratory tests were performed to determine the key features for accurate temperature measurements and flight altitude. Experiments were conducted in 2014 and 2015 in experimental and commercial sugar beet fields in Southwestern Spain to (i) develop an affordable infrared temperature system suitable for mounting on a UAV to obtain thermal information, (ii) compare sugar beet canopy temperature measurements collected with the low-cost platform with those obtained from a conventional thermal camera, both mounted on a rotary-wing UAV, (iii) identify the factors that will limit the use of the low-cost system to derive temperature-based water stress indices. To accomplish these objectives, well-watered and deficit irrigated plots were established. Results indicated that the lightweight canopy temperature system was robust and reliable, although there were some constraints related to weather conditions and delimitation of the area covered by the infrared sensor.  相似文献   

2.
Variable-rate irrigation by machines or solid set systems has become technically feasible, however mapping crop water status is necessary to match irrigation quantities to site-specific crop water demands. Remote thermal sensing can provide such maps in sufficient detail and in a timely way. In a set of aerial and ground scans at the Hula Valley, Israel, digital crop water stress maps were generated using geo-referenced high-resolution thermal imagery and artificial reference surfaces. Canopy-related pixels were separated from those of the soil by upper and lower thresholds related to air temperature, and canopy temperatures were calculated from the coldest 33% of the pixel histogram. Artificial surfaces that had been wetted provided reference temperatures for the crop water stress index (CWSI) normalized to ambient conditions. Leaf water potentials of cotton were related linearly to CWSI values with R 2 = 0.816. Maps of crop stress level generated from aerial scans of cotton, process tomatoes and peanut fields corresponded well with both ground-based observations by the farm operators and irrigation history. Numeric quantification of stress levels was provided to support decisions to divide fields into sections for spatially variable irrigation scheduling.  相似文献   

3.

The study aims at spatial analysis of water deficit of fruit trees under semi-humid climate conditions. Differences of soil, root, and their relation with the spatial variability of crop evapotranspiration (ETa) were analyzed. Measurements took place in a six hectare apple orchard (Malus x domestica ‘Gala’) located in fruit production area of Brandenburg (latitude: 52.606°N, longitude: 13.817°E). Data of apparent soil electrical conductivity (ECa) in 25 cm were used for guided sampling of soil texture, bulk density, rooting depth, root water potential, and volumetric water content. Soil ECa showed high correlation with root depth. The readily available soil water content (RAW) was calculated considering three cases utilizing (i) uniform root depth of 1 m, (ii) measured values of root depth, and (iii) root water potential measured during full bloom, fruit cell division stage, at harvest. The RAW set the thresholds for irrigation. The ETa was calculated based on data from a weather station in the field and RAW cases in high, medium and low ECa conditions. ETa values obtained were utilized to quantify how fruit trees cope with spatial soil variability. The RAW-based irrigation thresholds for locations of low and high ECa value differed. The implementation of plant parameters (rooting depth, root water potential) in the water balance provided a more representative figure of water needs of fruit trees Consequently, the precise adjustment of irrigation including plant data can optimize the water use.

  相似文献   

4.
Soil water status mapping and two variable-rate irrigation scenarios   总被引:1,自引:0,他引:1  
Irrigation is the major user of allocated global freshwaters, and scarcity of freshwater threatens to limit global food supply and ecosystem function—hence the need for decision tools to optimize use of irrigation water. This research shows that variable alluvial soil ideally requires variable placement of water to make the best use of irrigation water during crop growth. Further savings can be made by withholding irrigation during certain growth stages. The spatial variation of soil water supplied to (1) pasture and (2) a maize crop was modelled and mapped by relating high resolution apparent electrical conductivity maps to soil available water holding capacity (AWC) at two contrasting field sites. One field site, a 156-ha pastoral farm, has soil with wide ranging AWCs (116–230 mm m−1); the second field site, a 53-ha maize field, has soil with similar AWCs (161–164 mm m−1). The derived AWC maps were adjusted on a daily basis using a soil water balance prediction model. In addition, real-time hourly logging of soil moisture in the maize field showed a zone where poorly drained soil remained wetter than predicted. Variable-rate irrigation (VRI) scenarios are presented and compared with uniform-rate irrigation scenarios for 3 years of climate data at these two sites. The results show that implementation of VRI would enable significant potential mean annual water saving (21.8% at Site 1; 26.3% at Site 2). Daily soil water status mapping could be used to control a variable rate irrigator.  相似文献   

5.
Abstract The irrigated area of Manas River Valley in Northwest China is an example of the successful reclamation of massive land affected by shallow ground water levels and salinization. To determine the effect of irrigation management practices on soil salinization, soil profiles representing various soil types were sampled. The historical records on the characteristics of irrigation management practices, groundwater level and soil salts accumulation in this region at four key periods, namely: flood irrigation without drainage; flood irrigation with drainage but of low efficiency; irrigation in combination with lined irrigation canals and exploitation of groundwater; and irrigation with the application of water-saving irrigation techniques, were analyzed emphatically. In addition, the salinization status of cultivated land in 2010 and 2020 was also predicted by using analogism according to the relationship between soil salinization and irrigation practices. The results revealed that the application of the traditional irrigation methods, such as flood irrigation and ridge irrigation, resulted in a rapid rising of groundwater level and salts accumulation in soil surface layers. However, with the way of well irrigation and well drainage, the groundwater level and the desalinization in soil layers apparently lowered, leading to a substantial increase of crop yield. Currently, the application of drip irrigation under mulch decreased the salts concentration in soil layers and increased the crop yield. With the continuous application of drip irrigation, the average soil desalinization efficiency in soil layers may increase. It is predicted that the percentage of salinized land would be reduced to 35%–40% when irrigation water is utilized reasonably in 2010. With the high efficient utilization of irrigation water after 2020, the salinized land would remain below 30%. It is concluded that with the improvement of irrigation management, an obvious desalinization would appear in the soil surface layers and the area of salinized land in this study area would gradually narrow, but the land salinization problem would be hard to totally solve. __________ Translated from Journal of China Agricultural University, 2007, 12(1): 22–26 [译自: 中国农业大学学报]  相似文献   

6.
Several methods were developed for the redistribution of nitrogen (N) fertilizer within fields with winter wheat (Triticum aestivum L.) based on plant and soil sensors, and topographical information. The methods were based on data from nine field experiments in nine different fields for a 3-year period. Each field was divided into 80 or more subplots fertilized with 60, 120, 180 or 240 kg N ha−1. The relationships between plot yield, N application rate, sensor measurements and the interaction between N application and sensor measurements were investigated. Based on the established relations, several sensor-based methods for within-field redistribution of N were developed. It was shown that plant sensors predicted yield at harvest better than soil sensors and topographical indices. The methods based on plant sensors showed that N fertilizer should be moved from areas with low and high sensor measurements to areas with medium values. The theoretical increase in yield and N uptake, and the reduced variation in grain protein content resulting from the application of the above methods were estimated. However, the estimated increases in crop yield, N-uptake and reduced variation in grain protein content were small.  相似文献   

7.
Sims  A. L.  Moraghan  J. T.  Smith  L. J. 《Precision Agriculture》2002,3(3):283-295
Experiments were conducted in the Red River Valley (RRV) of Minnesota to determine the responses of hard red spring wheat (Triticum aerstivum L.) to fertilizer N after a sugar beet (Beta vulgaris L.) crop that varied spatially in canopy color and N content. A color aerial photograph was acquired of the sugar beet field just prior to root harvest, and six sites were selected that varied in sugar beet canopy color, three each of green and yellow canopy sites. The three green sugar beet canopies returned 369, 265, and 266 kg N ha–1 to the soil while the three yellow sugar beet canopies returned 124, 71, and 73 kg N ha–1 to the soil. Spring wheat response to fall-applied urea-N fertilizer (0, 45, 90, 135, and 180 kg N ha–1) was determined the following year at each of the above antecedent canopy sites. Soil NO3-N in the top 0.6 m of soil varied among the locations with a range of 35 to 407 kg NO3-N ha–1 at the green canopy sites and 12 to 23 kg NO3-N ha–1 at the yellow canopy sites. Application of fertilizer N according to traditional recommendation methods would have resulted in fertilizer applications at all three yellow canopy sites and two of the three green canopy sites. At the antecedent green sugar beet canopy sites, fertilizer N had little or no effect on spring wheat grain yields, grain N concentration, anthesis dry matter, and anthesis N content. In contrast, fertilizer N increased all four parameters at the antecedent yellow sugar beet canopy sites. The data indicate that fertilizer N management can be improved by using remote sensing to delineate management zones according to antecedent sugar beet canopy color.  相似文献   

8.
通过甜菜与白菜不同间作方式、甜菜喷施不同促进剂与抑制剂的田间试验,研究了不同栽培措施对甜菜产量与品质的影响。结果表明,间作甜菜受种植密度与白菜胁迫的影响,较单作甜菜产量显著降低,白菜与甜菜2∶1间作甜菜产量为单作的28.9%,2∶2间作甜菜产量为单作的50.1%;白菜采收后停止灌溉,不同种植方式的甜菜含糖量无明显差异;生长调节剂对甜菜含糖量无显著影响。白菜采收后控水是保证与促进甜菜糖分品质的关键。  相似文献   

9.
Continuous paddy rice cultivation requires fields to be flooded most of the time limiting seriously the collection of detailed soil information. So far, no appropriate soil sensor technology for identifying soil variability of flooded fields has been reported. Therefore, the primary objective was the development of a sensing system that can float, acquire and process detailed geo-referenced soil information within flooded fields. An additional objective was to determine whether the collected apparent electrical conductivity (ECa) information could be used to support soil management at a within-field level. A floating sensing system (FloSSy) was built to record ECa using the electromagnetic induction sensor EM38, which does not require physical contact with the soil. Its feasibility was tested in an alluvial paddy field of 2.7 ha located in the Brahmaputra floodplain of Bangladesh. The high-resolution (1 × 1 m) ECa data were classified into three classes using the fuzzy k-means classification method. The variation among the classes could be attributed to differences in subsoil (0.15–0.30 m below soil surface) bulk density, with the smallest ECa values representing the lowest bulk density. This effect was attributed to differences in compaction of the plough pan due to differential puddling. There was also a significant difference in rice yield among the ECa classes, with the smallest ECa values representing the lowest yield. It was concluded that the floating sensing system allowed the collection of relevant soil information, opening potential for precision agriculture practices in flooded crop fields.  相似文献   

10.
The objective of this research was to assess the effect of soil cracks on soil moisture distribution under various sprinkler irrigation applications and to identify the optimal irrigation strategy that enhances soil moisture distribution and reduces water drainage for the upper soil layer 0–250 mm. The assessment was made for six irrigation events: the first two were for 10 and 46 mm water applications using a hand shift-set sprinkler system. The second set was for 43 and 19 mm water applications using the lateral move system with fixed sprayer heads and the third pair of events were for 43 and 32 mm water applications using the lateral move system with rotating sprinklers. The experiments were conducted on two adjacent fields at the University of Queensland, Gatton, Australia. Each field was divided into 2 m × 2 m grids that covered 62 sampling locations. For each event, the initial soil moisture content (SMC) was measured at each sampling location before irrigation. After irrigation, catch can readings were recorded for each sampling location. After 12 h overnight, the second set of soil moisture measurements was taken at each location. The area1 distribution of SMC for the studied applications was quantified. An attempt was made to identify the relationship between the applied water uniformity using catch cans and the soil moisture uniformity using gravimetric water content measurements. The study also took into consideration variables that could affect the soil physical and hydrological properties including the field slope, the soil texture, the infiltration rate, the salt content and the soil organic matter content of the two fields. Since the soils were cracking clay Vertisols, further analyses were conducted on the crack dynamics, size and distribution using image analysis techniques. The research findings demonstrated that the cracks were the main contributors to water drainage below 250 mm soil depth due to the micro-run off from the crust surface to the cracks. The cracks ranged from a few millimeters to more than 40 mm in width. It was observed that the cracks which were wider than 15 mm remained open after irrigation for the specified application rates. Improving the irrigation system application uniformity did not always result in higher uniformity of the surface SMC (0–250 mm). The event that best enhanced soil moisture distribution and thus improved soil moisture recharging was observed after the sixth irrigation event when the field received 32 mm water application. The soil was at a relatively high initial SMC of 25%, (which represented 43.3% of the plant available water range) and the sprinkler water uniformity was rather high above 87% Christiansen coefficient of uniformity (CUc). At this SMC, the extent of soil cracking is limited.  相似文献   

11.
Dhillon  R.  Rojo  F.  Upadhyaya  S. K.  Roach  J.  Coates  R.  Delwiche  M. 《Precision Agriculture》2019,20(4):723-745

Persistent drought conditions in the Central valley of California demands efficient irrigation scheduling tools such as precision or variable rate irrigation (VRI). To assist VRI scheduling, an experiment was conducted in almond and walnut orchards using a sensor system called ‘leaf monitor’, which was developed at UC Davis to detect plant water status. A Modified Crop Water Stress Index (MCWSI) was calculated to quantify plant water status using leaf temperature and environmental data collected by the leaf monitor. This technique also took into account spatio-temporal variability of plant water status. Stem water potential (SWP), which is considered a standard method for determining plant water stress (PWS), was also measured simultaneously. Relationships between measured deficit stem water potential (DSWP), which is the difference between SWP and the saturated baseline, and MCWSI were developed for both crops based on data collected during the 2013 and 2014 growing seasons. A linear relationship was found in the case of walnut crop with a coefficient of determination (r2) value of 0.67. A quadratic relationship was found in the case of almonds with a coefficient of multiple determination (R2) value of 0.75. Moreover, these results highlighted that at lower PWS of below 0.5 MPa of DSWP, almonds crops did not show any decrease in transpiration rate. However, when the stress level exceeded 0.5 MPa of DSWP, transpiration rate tended to decrease. On the other hand, walnut crop showed decrease in transpiration rate even at low PWS of below 0.5 MPa of DSWP. Temporal variability was noticed in PWS as it was found that coefficients of saturation baseline used for MCWSI method changed significantly throughout the season. MCWSI values estimated before an irrigation event was used to calculate the irrigation amount for low frequency variable rate irrigation (VRI) based on the relationship found between MCWSI and DSWP, and VRI led to an average 39% reduction in water usage as compared to the fixed 100% ET replacement irrigation method for all trees. Based on the results, leaf monitor showed potential for use as an irrigation scheduling tool.

  相似文献   

12.
Abd  El-Razek  AM  Atta  YI  Hassan  AF 《南方农业学报》2012,42(8):916-922
【目的】2008~2009、2009~2010年分别在埃及El-Sharkia省Zankalon研究站进行不同灌溉和氮肥水平对甜菜产量、品质及水分指标的影响试验。【方法】采用裂区设计,分别设3个灌溉处理即 I1(60%田间持水量)、I2(80%田间持水量)和I3(100%田间持水量)和3个施肥处理即N1(50 kg N/fed)、N2(70 kg N/fed)和N3(90 kg N/fed)。【结果】灌水处理I1的甜菜块根和糖产量最高、根径最大,其次为处理I2,处理I3的最低。随着灌溉水平的提高,甜菜块根长和蔗糖含量明显下降。当施用90 kg N/fed氮肥,甜菜根长、根径、块根和糖产量明显提高,但糖分则有所降低。灌溉和施氮肥处理均对蔗糖纯度没有明显影响。3个灌溉处理I1、I2和I3的水分利用量分别为3579.7、3042.0和2504.0 m2/fed,季节耗水量分别为58.12、52.06和47.29 cm,而甜菜块根产量、糖产量的水分利用率分别为15.86、13.78、13.35 kg 块根/m3水和2.73、2.61 and 2.56 kg 糖/m3水。随着施氮水平的提高,获得一定甜菜根产量和糖产量,所需的实际耗水量和水分利用率也不断提高。在东尼罗河三角洲地区的甜菜平均季节作物系数为0.87。【结论】可在东尼罗河三角洲地区推荐使用Kc经验值来计算耗水量。  相似文献   

13.
Within-field spatial variability is related to multiple factors that can be time-independent or time-dependent. In this study, our working hypothesis is that a multi-time scale analysis of the dynamics of spatial patterns can help establish a diagnosis of crop condition. To test this hypothesis, we analyzed the within-field variability of a sugarcane crop at seasonal and annual time scales, and tried to link this variability to environmental (climate, topography, and soil depth) and cropping (harvest date) factors. The analysis was based on a sugarcane field vegetation index (NDVI) time series of fifteen SPOT images acquired in the French West Indies (Guadeloupe) in 2002 and 2003, and on an original classification method that enabled us to focus on crop spatial variability independently of crop growth stages. We showed that at the seasonal scale, the within-field growth pattern depended on the phenological stage of the crop and on cropping operations. At the annual scale, NDVI maps revealed a stable pattern for the two consecutive years at peak vegetation, despite very different rainfall amounts, but with inverse NDVI values. This inversion is linked with the topography and consequently to the plant water status. We conclude that (1) it is necessary to know the crop growing cycle to correctly interpret the spatial pattern, (2) single-date images may be insufficient for the diagnosis of crop condition or for prediction, and (3) the pattern of vigour occurrence within fields can help diagnose growth anomalies.
Pierre TodoroffEmail:
  相似文献   

14.
Understanding spatial variability of indigenous nitrogen (N) supply (INS) is important to the implementation of precision N management (PNM) strategies in small scale agricultural fields of the North China Plain (NCP). This study was conducted to determine: (1) field-to-field and within-field variability in INS; (2) the potential savings in N fertilizers using PNM technologies; and (3) winter wheat (Triticum aestivum L.) N status variability at the Feekes 6 stage and the potential of using a chlorophyll meter (CM) and a GreenSeeker active crop canopy sensor for estimating in-season N requirements. Seven farmer’s fields in Quzhou County of Hebei Province were selected for this study, but no fertilizers were applied to these fields. The results indicated that INS varied significantly both within individual fields and across different fields, ranging from 33.4 to 268.4 kg ha−1, with an average of 142.6 kg ha−1 and a CV of 34%. The spatial dependence of INS, however, was not strong. Site-specific optimum N rates varied from 0 to 355 kg ha−1 across the seven fields, with an average of 173 kg ha−1 and a CV of 46%. Field-specific N management could save an average of 128 kg N ha−1 compared to typical farmer practices. Both CM and GreenSeeker sensor readings were significantly related to crop N status and demand across different farmer’s fields, showing a good potential for in-season site-specific N management in small scale farming systems. More studies are needed to further evaluate these sensing technology-based PNM strategies in additional farmer fields in the NCP.  相似文献   

15.
通过在新疆巴州灌溉试验站进行的膜下滴灌棉花灌溉制度试验,得出了适合当地的常规滴灌制度。为进一步研究浅层地下水对灌溉的补偿效应,利用Hydrus软件对不同地下水埋深下膜下滴灌棉花生育期耗水量进行了模拟。通过引入关键点土壤含水率的概念,提出了膜下滴灌棉花受水分胁迫的标准。结果表明:地下水对棉花的耗水具有一定的补偿作用,地下水埋深越浅,则所需的灌溉定额越小。当地下水埋深小于1.5 m时,滴灌定额为3 300 m3·hm-2;当地下水埋深为2.0 m时,滴灌定额为4 500 m3·hm-2;当地下水埋深很大而对作物根区没有补给时,棉花完全依赖于灌溉所需的滴灌定额则为5 550 m3·hm-2。考虑到干旱区内具有较高的潜在蒸发势,会导致土壤的次生盐渍化,从而危及作物的生长,1.5~3.0 m的地下水埋深是灌区内较理想的水位区间。  相似文献   

16.
Precision irrigation systems can have inherent errors that affect the accuracy of variable water application rates controllers, as well as affect the controllers’ performance when evaluated on different continuous move irrigation systems configurations. The objective of this study was to assess the performance of a remote irrigation monitoring and control system (RIMCS) installed on two separate linear move (LM) irrigation systems. The RIMCS varies water application rates by pulsing nozzles controlled by solenoids connected via relays to a single board computer (SBC) with wireless Ethernet connection to a remote server. The system also monitors irrigation system flow, pressure, position and wireless field sensor networks. The system was installed on a LM irrigation system in Prosser, Washington, USA and on a LM in the Nesson Valley of North Dakota, USA. For the LM at Prosser, four pre-defined irrigation patterns were imposed and variable rates were applied as a percentage of the nozzle base application rate. Each nozzle was pulsed across the span length and along the LM travel direction. For the LM at the Nesson Valley, a quadratic pattern was imposed pulsing banks of nozzles along the LM travel direction. Standard catch can tests were performed and the system performance was evaluated by comparing measured catch can water depths with pre-determined target values. The RIMCS accuracy was found to be in the range of the LM uniform water depth application uniformity coefficients of 88–96%. The RIMCS was successfully transferred to another LM in North Dakota as indicated by the relatively low variable rate application errors of –8.8 ± 8.1% and −0.14 ± 6.7% for the two spans.  相似文献   

17.
18.
[目的]对当归在不同水肥处理下的需水量进行研究,为当归灌溉制度研究及GAP规范化种植提供理论依据。[方法]通过小区田间试验,依据试验结果进行理论统计分析,分析了当归在不同灌水施肥处理下的土壤水分变化规律、需水量和作物系数。[结果]不同处理0~37 cm深度土壤含水率变化、表层土壤含水率变化起伏较大,随着深度增加,土壤含水率变化较小;不同水肥处理对当归阶段需水量的影响,需水量与灌水量大小成正比,灌水量越大,需水量越高;在适宜灌溉条件下,当归整个生育期的日耗水强度从0.16~4.03不等,作物系数为0.37~1.26,全生育期需水量592.98 mm;当归的整个生育期作物系数变化趋势是先增大后减小。[结论]该研究结果对制定当归种植灌溉制度和GAP规范意义重大。  相似文献   

19.
土壤剖面基础性质差异对农田水氮过程和作物产量的影响   总被引:4,自引:0,他引:4  
【目的】华北平原地区是中国最重要的冬小麦和夏玉米生产基地,不同农田土壤基础性质差异是造成该地区农田生产力空间变异的基本原因。通过研究该地区冲积始成土冬小麦-夏玉米轮作农田土壤剖面性质对水氮过程以及作物产量形成的影响,以期为该地区高产农田的水氮利用与管理提供参考。【方法】选取位于山东省泰安市研究区3块具有不同土壤基础性质且产量存在显著性差异的农田,进行3年田间试验,测定土壤剖面的土壤基本性质,具体包括机械组成、饱和导水率、田间持水量、永久萎蔫点、有机碳、全氮;监测土壤剖面0-160 cm的水分和硝态氮的动态变化以及作物生物量、叶面积指数和产量等。运用根区水质模型(RZWQM)对各农田的水氮过程进行模拟计算。【结果】RZWQM模型在整体上可以很好地模拟2009年10月至2012年9月3年不同基础土壤性质农田水分、无机氮、作物产量、地上部生物量和叶面积动态特征,并计算各农田水氮平衡项。各农田土壤基础性质差异对水氮过程及产量形成的影响具体为:高产农田0-160 cm剖面的最大有效贮水量为223 mm,分别高出中产和低产农田28和56 mm,同时30 cm深度以下土层具有相对较低的饱和导水率。该基础性质差异使得高产农田年均水分损失(地表径流+深层渗漏)仅为150.3 mm,分别低于中产和低产农田5.7和26.4 mm,从而使高产农田作物受到相对低的水分胁迫。高产农田土壤表层土壤有机碳含量较中低产田高,而碳氮比则较低,使得高产农田具有更高的净矿化氮量(较中产和低产农田高52.0和82.6 kg·hm-2),且较低的氮损失(氨挥发+氮淋洗+反硝化作用),较中产和低产农田分别少6.9和10.9 kg·hm-2。高产农田的水分利用效率(WUE)为2.32 kg·m-3,分别较中产和低产农田高12.1%和6.8%,这是因为高产农田受到较低的氮素胁迫。在本研究区不同土壤基础性质农田的氮素利用效率(NUE)差异不显著。【结论】在华北平原冬小麦-夏玉米轮作区,理想的土体构型能够存储更多的有效水,高土壤有机碳含量和低的碳氮比能矿化出更多的无机氮,保障了充足的水氮供应,减缓作物受到的水氮胁迫,从而获得高产。  相似文献   

20.
为明晰补水移栽对纸筒育苗甜菜苗期生长及产量品质的影响,研究比较了地下式补水与传统的地上式补水的土壤润湿结构特征,补水量对甜菜苗期地下部根系与地上叶片发育的影响,以及补水移栽在两种土壤条件下的甜菜产量与品质效应。结果表明,地下式补水创造了环裹于秧苗纸筒底部的土壤湿润球,利于向秧苗供水与田间有效保水。随补水量的增加,甜菜苗期侧根数、主根长、主根粗、根鲜重、叶片量、叶面积随之显著增长。在华北寒旱区砂质栗钙土农田,以成活率与壮苗为目标的甜菜移栽补水量为150~200 ml·株-1、壤质草甸栗钙土农田为100~150 ml·株-1为宜,较不补水甜菜块根增产68.78%~81.82%,糖产量提高65.57%~81.82%。地下式补水移栽,是提高甜菜成活率的关键;适量补水实现培育壮苗,成为甜菜高产的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号