共查询到20条相似文献,搜索用时 0 毫秒
1.
刚采收的猕猴桃硬果不产生乙烯,也无 ACC 氧化酶活性,但有少量 ACC 存在。随着果实的软化,乙烯开始出现并很快达到释放高峰,乙烯的释放与 ACC 氧化酶的活性及 ACC的含量变化一致。用外源乙烯或机械伤处理加速了猕猴桃果实内源乙烯释放的原因,是这些处理促进了 ACC 的合成并增加了 ACC 氧化酶的活性。与冷藏相比,气调贮藏强烈地抑制了ACC 氧化酶的活性和乙烯的释放。浸钙处理对猕猴桃果实的乙烯释放、ACC 氧化酶活性及ACC 含量影响不大,因此浸钙处理后减缓猕猴桃果实软化的作用可能是通过其他途径实现的。 相似文献
2.
气调对猕猴桃果实采后乙烯生成的效应及其机制 总被引:6,自引:0,他引:6
气调贮藏条件下猕猴桃果这成熟延缓,组织内乙烯含量及乙烯生成速率明显低于对照,气调处理抑制乙烯生成的效应主要通过抑制ACC合成实现,也报制ACC氧化酶活性,降低ACC/(ACC+MACC)比值。ACC含量猕猴桃果实采后乙烯生成的限制因子,气调条件下果实组织内乙烯含量、ACC含量及ACC氧化酶活性变化出现交替升降现象。 相似文献
3.
气调贮藏条件下猕猴桃果实成熟延缓,组织内乙烯含量及乙烯生成速率明显低于对照,气调 处理抑制乙烯生成的效应主要通过抑制ACC合成实现,也抑制ACC氧化酶活性,降低ACO/ACC+ MACC)比值, ACC含量是猕猴桃果实采后乙烯生成的限制因子。气调条件下果实组织内乙烯含量、 ACC含量及ACC氧化酶活性变化出现交替升降现象。 相似文献
4.
5.
【目的】探究臭氧(ozone,O_3)是否能有效减轻膨大剂(N-2-氯-4-吡啶基苯-N’-苯基脲,CPPU)对猕猴桃带来的负面影响,为市场上使用CPPU猕猴桃的贮藏提供信息。【方法】以采前盛花期28d使用20 mg·L~(-1) CPPU处理和对照用清水蘸果处理的秦美猕猴桃为试验材料,研究不同浓度的O_3处理(0、10、40、70 mg·m~(-3))对贮藏期间猕猴桃果实乙烯代谢过程中的蛋氨酸(methionine,Met)、S-腺苷蛋氨酸(S-adenosyl methionine,SAM)、1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid,ACC)含量及其相关代谢酶1-氨基环丙烷-1-羧酸合成酶(ACC synthase,ACS)和1-氨基环丙烷-1-羧酸氧化酶(ACC oxidase,ACO)活性的影响。【结果】CK组(未使用CPPU也未使用O_3处理的为CPPU对照组CK)在贮藏过程中Met、SAM含量以及SAM合成酶、ACS、ACO活性的下降速率均低于CK1组(使用CPPU但未使用O_3处理的为臭氧处理对照组CK1);贮藏60 d时,CK1和各O_3处理(10、40、70 mg·m~(-3))的Met含量分别为1.36、2.62、4.41和2.60 mg·(100 g)~(-1),O_3处理显著高于CK1(P0.05);CK1和40 mg·m~(-3) O_3处理的SAM含量分别为15.48 mg·(100 g)~(-1)和20.73 mg·(100 g)~(-1),具有显著性差异(P0.05),而CK1和10 mg·m~(-3) O_3处理组、70 mg·m~(-3) O_3处理组无显著性差异(P0.05);CK1和各O_3处理(10、40、70 mg·m~(-3))的ACC含量分别为0.068、0.059、0.038和0.055 nmol·g~(-1),40、70 mg·m~(-3 )O_3处理与CK1具有显著性差异(P0.05);CK1和各O_3处理(10、40、70 mg·m~(-3))的ACS活性分别为0.084、0.069、0.054和0.080 nmol·(g·h)~(-1);ACO活性的峰值分别为0.062、0.046、0.029和0.051 nmol·(g·h)~(-1),O_3处理和CK1之间存在显著性差异(P0.05);CK1和各O_3处理(10、40、70 mg·m~(-3))的乙烯的峰值分别为18.42、15.99、9.86、11.69μL·kg~(-1)·h~(-1);呼吸高峰分别是18.77、16.15、12.24、15.48 mg·kg~(-1)·h~(-1)。【结论】CPPU增加了猕猴桃乙烯释放量,加速了果实软化,对猕猴桃贮藏带来负面影响,O_3处理能有效抑制猕猴桃的乙烯代谢,延缓果实软化,因此O_3处理能有效减缓因使用CPPU而导致的猕猴桃后熟软化进程。 相似文献
6.
乙烯与猕猴桃果实的后熟软化 总被引:14,自引:0,他引:14
研究猕猴桃果实成熟进程中内源乙释放规律以及外源乙烯处理对果实后熟软化的效应,以探讨乙与猕猴桃果实后熟软化的关系,结果表明,猕猴桃果实采后后熟软化分为前期的软化启动阶段和后期的快速软化阶段,乙烯在果实成熟过程作用主要是加速了快速软化果实软化进程,而与软化启动阶段的果实罗伦启动无上关;外源忆烯可加速猕猴桃果实后熟软化,其调探机理并不是通过促进果实内源乙的合成而实现的。 相似文献
7.
8.
9.
一氧化氮处理对采后番木瓜果实乙烯生物合成的影响 总被引:1,自引:0,他引:1
为了解一氧化氮(N0)处理对番木瓜果实乙烯生物合成的影响,采用60 μL/L NO熏蒸处理采收成熟度为果皮浅绿并微带黄色痕迹的番木瓜果实3h,然后在20C和相对湿度为85%条件下贮藏20 d.研究NO对番木瓜乙烯、1-氨基环丙烷-1-羧酸(ACC)、丙二酰-1-氨基环丙烷-I-羧酸(MACC)、ACC合成酶(ACS)和ACC氧化酶(ACO)及CpA CS2和CpA C01基因表达的影响.结果表明,NO处理降低了番木瓜果实乙烯释放量、ACO的活性及CpA C0l基因的表达,导致贮藏过程果实ACC和MACC的积累,但对ACS的活性及CpA CS2基因的表达无显著抑制作用. 相似文献
10.
贮藏温度对猕猴桃果实的乙烯释放及品质的影响 总被引:1,自引:0,他引:1
本文研究不同贮藏温度对猕猴桃果实的乙烯释放,呼吸强度及品质变化的相关性。在4℃条件下,乙烯释放低,果实内的蛋白质含量,维生素C,还原糖和可溶性固形物含量变化很小,硬度随贮藏期的延长缓慢下降;而在25℃条件下,由于乙烯含量的明显升高,在短期内果实品质变化较大,尤其蛋白质,维生素C和还原糖含量较大下降趋势,硬度也显著下降。 相似文献
11.
研究猕猴桃果实成熟进程中内源乙烯释放规律以及外源乙烯处理对果实后熟软化的效应,以 探讨乙烯与猕猴桃果实后熟软化的关系.结果表明,猕猴桃果实采后后熟软化分为前期的软化启动阶段 和后期的快速软化阶段,乙烯在果实成熟过程的作用主要是加速了快速软化阶段的果实软化进程,而与 软化启动阶段的果实软化启动无明显相关;外源乙烯可加速猕猴桃果实后熟软化,其调控机理并不是通 过促进果实内源乙烯的合成而实现的。 相似文献
12.
以美味猕猴桃和中华猕猴桃为原料,利用自行研制的均强高压静电场保鲜试验系统,并用调定场压的高压静电场对猕猴桃果实进行定时处理,然后放在常温下贮藏。贮藏过程中每隔1d用气相色谱法测定果实的乙烯释放速率,并与对照组作比较。试验结果表明:在同一时期处理果实的乙烯释放高峰比对照显著推迟或降低。 相似文献
13.
14.
本文研究了不同贮藏温度对猕猴桃果实的乙烯释放、呼吸强度及品质变化的相关性。在4℃条件下,乙烯释放低,果实内的蛋白质含量、维生素已还原糖和可溶性固形物含量变化很小,硬度随贮藏期的延长缓慢下降;而在25℃条件下,由于乙烯含量的明显升高,在短期内果实品质变化较大,尤其蛋白质、维生素C和还原糖含量较大下降趋势,硬度也显著下降。 相似文献
15.
乙烯调控果实成熟研究的进展 总被引:3,自引:0,他引:3
本文对乙烯生物合成的途径及乙烯生物合成的两个关键酶即ACC合成酶和ACC氧化酶进行了较为详细的介绍;着重讨论了ACC合成酶和ACC氧化酶的反义RNA及ACC脱氨基酶对番茄果实成熟的抑制作用,并对乙烯调控果实成熟的机制进行了探讨。 相似文献
16.
猕猴桃果实后熟过程中乙烯生成和超氧物歧化酶及过氧化物酶的活性变化 总被引:4,自引:0,他引:4
以美味猕猴桃[Actinidia deliciosa(A.chev.)C.F.Liang et A.R.Ferguson]“布鲁诺”(Bruno)果实为试材,研究(20±1℃)后熟过程中乙烯生成、超氧物歧化酶(SOD)和过氧化物酶(POD)的活性变化。结果表明:猕猴桃果实具有典型的乙烯跃变峰,峰值出现在采后第11天左右;SOD活性变化与ACC含量变化呈显著正相关(r=0.6766~(?));过氧化物酶活性峰值于乙烯跃变峰之后出现。果实可溶性固型物(TSS)含量在整个后熟过程中呈持续上升趋势。SOD可能参与了猕猴桃果实的后熟调节,在乙烯生物合成过程中起重要作用;POD活性变化可以作为猕猴桃果实组织衰老的一个参数。 相似文献
17.
18.
乙烯生物合成关键酶基因研究进展 总被引:1,自引:0,他引:1
ACC合成酶(ACS)和ACC氧化酶(ACO)是催化乙烯生物合成的两个关键酶,这两个酶的基因在调控果品和花卉完熟及衰老方面具有重要意义,本文综述了ACS和ACO基因最新研究进展。 相似文献
19.
乙烯利和ABA处理对‘金魁’猕猴桃果实后熟软化的生理效应 总被引:1,自引:0,他引:1
研究了乙烯利和ABA处理对‘金魁’美味猕猴桃采后生理及内源激素的影响。结果表明:‘金魁’果实属典型的呼吸跃变型果实,具有明显的呼吸跃变和乙烯释放高峰。乙烯利和ABA处理显著地促进了果实的呼吸和乙烯释放,加速果实硬度的下降,从而加速果实的后熟衰老,相比之下,乙烯利较ABA更能促进果实的成熟和软化。同时乙烯利和ABA处理还促进了果实内源ABA的积累.加速IAA和GA3水平的下降。 相似文献
20.