首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

2.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

3.
In 393 field experiments in Baden‐Württemberg region in south‐western Germany, herbicide efficacy, yield loss and crop tolerance of maize (Zea mays) were investigated between 1981 and 2011. The collected data served to determine changes in weed frequencies, in herbicide use, yield loss functions and economic thresholds (ETs). Over 60 weed species were reported. Chenopodium album and Galium aparine were the most frequent broad‐leaved weeds, the former becoming more frequent over time. Species of the genera Lamium, Polygonum, Veronica and Matricaria occurred in about every fifth trial. Alopecurus myosuroides and Echinochloa crus‐galli were the most frequent grass weeds; the former declining in frequency by 1.1% per year, the latter increasing by 1.5%. Results suggest a weed population shift towards thermophilic species. aceto‐lactate‐synthase and 4‐HPPD‐inhibitor herbicides became important in the 1990s. Pendimethalin and bromoxynil have been integral components of weed control since the 1980s. ETs, the point at which weed control operations provide economic returns over input costs, ranged between 3.7% and 5.8% relative weed coverage. Without weed control, no yield increase was found over 24 years. Yield increased by 0.2 t ha ? 1 year ? 1, if weeds were controlled chemically. Despite intensive use of effective herbicides in maize, problematic weed species abundance and yield losses due to weed competition have increased in Baden‐Württemberg over a period of 30 years.  相似文献   

4.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

5.
McDonald  & Riha 《Weed Research》1999,39(5):355-369
A complex set of interactions among crops, weeds and their environment determines the impact of weed interference on crop productivity. These interactions can be simulated with dynamic crop:weed competition models, such as ALMANAC. In this study, ALMANAC was modified to simulate maize: Abutilon theophrasti competition. In the modified ALMANAC model, daily increases in leaf area index (LAI), height and rooting depth are attenuated on the basis of accumulated above-ground biomass and by environmental stress. Also, a simple, flexible method is adopted to partition radiation in a mixed canopy. A maize: A. theophrasti competition study conducted near Aurora, NY, in which a range of weed densities (0–16 plants m−2) were established in a maize crop, was used to evaluate the model. The modified ALMANAC proved to be a useful tool for segregating the maize response to competition in 1991 (simulated loss of 35% at the highest weed density) from those in 1992–94 (simulated losses not greater than 16%). Based on these findings, the modified ALMANAC model is judged to be capable of distinguishing between environmental conditions that facilitate large yield losses and those that allow maize to outcompete A. theophrasti .  相似文献   

6.
McDonald  & Riha 《Weed Research》1999,39(5):371-381
The practical application of single-season economic thresholds for post-emergence weed control decisions has been frustrated by the impact of growing season, climate and edaphic factors on crop:weed interactions. Competition in a mixed plant community is a dynamic process that is contingent upon species-specific growth characteristics and their expression based on environmental conditions. To address these issues, a modified version of the ALMANAC competition model was parameterized and run to simulate maize: Abutilon theophrasti competition with 30 years (1966–95) of historical climate data for a site in New York State. Simulations indicate that, when weeds do not emerge before maize, maize will only suffer substantial yield reductions from A. theophrasti competition in two out of every 10 years at this site. It is also evident that economic thresholds based solely on the level of weed infestation are inherently flawed. Long-term simulation results suggest that estimates of early season water stress could be used as an independent tool for rationalizing post-emergence control decisions. Shifting the focus from quantifying the infestation intensity of the weed population to assessing the competitive status of the maize crop indirectly with climate information may alleviate many of the problems commonly associated with threshold management strategies.  相似文献   

7.
Field experiments were conducted to characterize the demography of Abutilon theophrasti and Setaria faberi in a conventionally managed 2‐year (maize/soya bean) rotation, and in 3‐year (maize/soya bean/triticale + red clover) and 4‐year (maize/soya bean/triticale + lucerne/lucerne) rotations managed with 72% and 79% lower herbicide inputs respectively. Rates of weed seedling recruitment, seedling survival and adult plant fecundity were determined for populations in each phase of each rotation and used to calculate annual rates of weed population change, Δ. In both years of the study, Δ for A. theophrasti populations declined or remained stable in all three rotation systems. Despite greater rates of seedling survival and fecundity in maize and soya bean in the 3‐ and 4‐year rotations, increases in Δ for A. theophrasti populations were prevented in these systems because of low fecundity in triticale and low seedling survival and fecundity in lucerne. For Setaria faberi populations, Δ remained stable in the 2‐year rotation, increased in the 3‐year rotation in both years, and increased in the 4‐year rotation in 1 year. The results of this study indicate that when herbicide use is reduced, rotations that include triticale and lucerne can facilitate the suppression of A. theophrasti. Rotations that include lucerne can contribute to restraining S. faberi population growth, given adequate levels of seedling mortality in this crop.  相似文献   

8.
G. ZANIN  M. SATTIN 《Weed Research》1988,28(5):347-352
Four tests were carried out in 1980 and 1981 to determine: (a) the economic threshold density of Abutilon theophrasti Medicus (velvetleaf) in maize, and (b) seed production with varying densities of infestation, both in the presence and in the absence of maize. The infestation was artificially created, and the density of the weed ranged from 0 to 80 plants m?2. The economic threshold, calculated using the Cousens (1987) model, varied between 0?3 plants m?2 and 2?4 plants m?2, depending on the variables considered. The presence of maize reduced the seed-rain of A. theophrasti by 50%. This seed-rain reached its maximum level at 20–30 plants m?2 in maize, and at 30–35 plants m?2 in weed monoculture. However, with only 4–5 plants m?2 in competition with maize, A. theophrasti produced 8–10 thousand seeds m?2. The usefulness of threshold density in weed management is debatable when one considers the ecological characteristics of the A. theophrasti seed, and the great capacity of seed production of this weed.  相似文献   

9.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

10.
Planning effective weed control in cropping systems requires exact appraisal of the weed intensity and duration of their competition with the crops. This 2‐year study was carried out in order to determine the critical weed control period in sesame fields. Related and relative crop yields were monitored and analyzed using a four‐parametric log‐logistic model. We recorded data from weed‐free plots and compared these with data from different periods of weed interference. In both the study years, the longer period of weed interference decreased the relative yield of sesame, whereas the yield was increased with increasing duration of the weed‐free period. A 51–78.7% decline in sesame yield was noted if the weeds were allowed to compete with the crop from planting to harvest. In the first year, the duration of the critical period for weed control (CPWC) was 177–820 growing degree days (GDD), which corresponded to 14–64 days after crop emergence (DAE), and between 170 and 837 GDD (13–64 DAE) in the second year; this was based on a 5% acceptable yield loss. The results of this study clearly elaborated that maintaining weed‐free conditions is compulsory from as early as the second week after the emergence of sesame plants, and this should be maintained at least until the ninth week to avoid sesame yield losses by more than 5%. These findings show that growers can benefit from CPWC to improve weed control in sesame production, including the efficacy of a weed control program and its cost.  相似文献   

11.
The outcome of crop-weed competition should be predicted as early as possible in order to allow time for weed control measures. Maize grain yield losses caused by interference from Amaranthus retroflexus L. (redroot pigweed) were determined in 1991 and 1992. The performance of three empirical models of crop-weed competition were evaluated. Damage functions were calculated based on the weed density or relative leaf area of the weed. In the yield loss-weed density model, values of I (percentage yield loss at low weed density) were relatively stable for similar emergence dates of A. retroflexus across years and locations. Estimated maximum yield loss (A) was more variable between locations and may reflect environmental variation and its effect on crop-weed competition, at least in 1991. The two-parameter yield loss-relative leaf area model, based on m (maximum yield loss caused by weeds) and q (the relative damage coefficient) gave a better fit than the single-parameter version of the model (which includes only q). In both relative leaf area models, the values of q varied between years and locations. Attempts to stabilize the value of q by using the relative growth rate of the leaves of the crop and weed were successful; however, the practical application of such relative leaf area models may still be limited owing to the lack of a method to estimate leaf area index quickly and accurately.  相似文献   

12.
The performance of three empirical models describing white bean yield loss (YL) from common ragweed competition was compared using field experiments from Staffa and Woodstock, both in Ontario, Canada, in 1991 and 1992. One model was based upon both weed density and relative time of emergence. The other two models described yield loss as a function of weed leaf area relative to the crop. The model based on both weed density and relative time of emergence best described the data sets. The predicted maximum yield loss (A) and the parameter for relative time of weed emergence (C) varied across locations and years whereas the yield loss at low weed density (I) was relatively more consistent across locations and years. Use of thermal time (base temperature=10oC) rather than calendar days did not change the overall fit of the model, but reduced the value of the parameter for the relative time of weed emergence (C). The two parameter leaf area model accounting for maximum yield loss (m) gave a better fit to the data compared with the one parameter model. The relative damage coefficient (q) varied with time of leaf area assessment, location and year. Values of q calculated from relative leaf area growth rates of the crop and weed were similar to observed values. The relationship between q and accumulated thermal time was linear but varied with location and year. As management tools, models based upon relative leaf area have advantages over models based on density and relative time of emergence since the level of weed infestation needs only to be assessed once, whereas density and emergence time require frequent observations. The ability to assess accurately and quickly both the crop and weed leaf area, however, may limit the practical application of models based on leaf area. The inability of empirical models to account for year–to–year variation in environmental conditions was observed.  相似文献   

13.
Effects of density and period of competition by Solanum nigrum L. on direct seeded tomatoes in relation to weed control The effects of density and period of competition from Solanum nigrum L. were measured in direct seeded tomatoes given weed control treatments currently used in south-east France. S. nigrum emerging after a diquat treatment at the 2–3 leaf stage of the crop and thinned to low densities (<12.8 plants ha?1) at the 5–6 leaf stage of the crop caused significant yield loss if left to compete with the crop until harvest. Yield reduction was smaller if the same weed densities were present only until the onset of flowering. The regression curves of yield on weed density differed as annual climatic variations affected sowing date and plant growth; a comparison between years was made using the relation ‘crop yield × weed biomass/crop biomass’. Significant interactions between weed density and period of competition were found with yield of both green and red fruit. For late sown crops with low densities of S. nigrum two weed control treatments at the 5–6 leaf stage and at the onset of flowering were sufficient to prevent yield loss.  相似文献   

14.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

15.
16.
Lutman  Bowerman  Palmer  Whytock 《Weed Research》2000,40(3):255-269
Ten experiments have investigated competition between winter oilseed rape and Stellaria media (common chickweed). Yield losses caused by this weed were often high, but differed greatly between experiments, 5% yield loss being calculated to be caused by 1.4–328 plants m?2. Predictions of yield loss based on relative weed dry weights [weed dry weights/(crop + weed dry weights)] in December were somewhat less variable than those based on weed density, 5% yield loss being caused by 1.4–10.6% relative weed dry weight. The variations in yield loss were related to variations in the competitiveness of the oilseed rape and the S. media, caused by weather differences between years and sites, and the long period between weed assessment and harvest (8–10 months). However, despite the lack of precise relationships, there were indications that the greater the crop dry weights in December, the lower the final yield loss. Delayed sowing of oilseed rape until late September did not clearly increase the competitive effects of the weed compared with late August/early September sowings. Weed competition was not clearly affected by reduced crop density (44–113 plants m?2), because of the compensatory ability of the lowest density. The results of the experiments are discussed in relation to the prediction of yield loss and, thus, possible adjustment of weed control strategies to meet expected crop losses.  相似文献   

17.
Soil nitrogen (N) is considered an important driver of crop‐weed interactions, yet the mechanisms involved have been only partially explored, especially with respect to early‐season growth, when competitive hierarchies are formed. This study characterises the effects of different N levels on biomass accumulation and plant morphology for maize (Zea mays), and four important weed species (Amaranthus retroflexus, Abutilon theophrasti, Setaria faberi, and Chenopodium album). Under glasshouse conditions, plants were grown in separate pots and irrigated with nutrient solution at four N concentrations (0.2, 0.5, 2, 5 μm L−1) until 57 days after emergence. Except for S. faberi, which was unresponsive to N, the relative biomass growth rates (RGR) of maize and the broad‐leaved weeds were positively and similarly affected by increasing nitrogen. At all N levels, maize had a height advantage by virtue of its larger seed size, which conferred early growth benefits independent of RGR. At low N, biomass growth was instrumental to S. faberi’s improved competitive position, whereas height development per unit biomass improved the competitive position of A. theophrasti, C. album and A. retroflexus. The approach presented could be applied to other crop‐weed systems to evaluate environmental impacts on competitive outcomes.  相似文献   

18.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

19.
Modelling the effects of weeds on crop production   总被引:3,自引:0,他引:3  
M. J. KROPFF 《Weed Research》1988,28(6):465-471
In most quantitative studies on interplant competition, static regression models are used to describe experimental data. However, the generality of these models is limited. More mechanistic models for interplant competition, which simulate growth and production of species in mixtures on the basis of the underlying physiological processes, have been developed in the past decade. Recently, simulation models for competition between species for light and water were improved and a detailed version was developed for sugarbeet and fat hen (Chenopodium album L.). The model was validated with data sets of five field experiments, in which the effect of fat hen on sugarbeet production was analysed. About 98% of the variation in yield loss between the experiments (which ranged from –6 to 96%) could be explained with the model. Further analysis with the model showed that the period between crop and weed emergence was the main factor causing differences in yield loss between the experiments. Sensitivity analysis showed a strong interaction between the effect of the variables weed density and the period between crop and weed emergence on yield reduction. Different quantitative approaches to crop-weed competition are discussed in view of their practical applicability. Simulations of experiments, where both the weed density and the period between crop and weed emergence were varied over a wide range, showed a close relation between relative leaf cover of the weeds shortly after crop emergence and yield loss. This relation indicates that relative leaf cover of the weeds accounts for both the effect of weed density and the period between crop and weed emergence. This relation has the potential to be developed into a powerful tool for weed-control advisory systems.  相似文献   

20.
During the last decade, maize has become the crop with the second largest acreage in Germany. Therefore, agricultural advisors and the plant protection sector are interested in an overview of the weed species composition in maize fields, their determining factors and trends. From 2001 to 2009, a weed survey was conducted in 1460 maize fields throughout Germany. Data on crop management and soil characteristics were collected via farmer questionnaires. Principal component analysis and redundancy analysis were used to analyse patterns in weed species composition. The late spring and summer germinating species Chenopodium spp., Echinochloa crus‐galli and Solanum nigrum occurred with high densities and frequencies, but their occurrence was determined by different factors. Other frequent weed species were those that typically accompany autumn‐sown crops. The variation in species composition was significantly related to environmental factors (9.1% explained variance), particularly geographical latitude and precipitation, and management factors (4.7% explained variance), particularly crop sequence. The relative importance of these factors seems universal, when compared with surveys in other crops and regions. The factor ‘year’ was of minor importance (0.9% explained variance). Over the 9‐year period, no changes in weed species composition could be determined. The results suggest that despite the limited impact of crop management on weed species composition, farmers can use crop sequence to suppress individual species. The survey furthermore sets a baseline against which future changes can be measured in a landscape of rapidly changing agricultural land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号