首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat   总被引:1,自引:0,他引:1  
ABSTRACT Wheat (Triticum aestivum) cultivar Pavon 76 carries slow-rusting resistance to leaf rust that has remained effective in Mexico since its release in 1976. 'Pavon 76' was crossed with two leaf rust-susceptible wheat cultivars, Jupateco 73S and Avocet S, and between 118 and 148 individual F(2) plant-derived F(3) and F(5) lines were evaluated for adult-plant leaf rust resistance at two field sites in Mexico during different seasons. Evaluation of F(1) plants and parents indicated that the slow-rusting resistance was partially dominant. Segregation in the F(3) and F(5) indicated that the resistance was based on two genes with additive effects. Monosomic analysis was carried out to determine the chromosomal locations of the resistance genes. For this purpose, two or three backcross-derived cytogenetic populations were developed by crossing 'Pavon 76' with a monosomic series of adult-plant leaf rust-susceptible cultivar Lal-bahadur. Evaluation of such BC(2)F(3) and BC(3)F(3) lines from 16 confirmed 'Lalbahadur' monosomics indicated that one slow-rusting gene was located in chromosome 1B of 'Pavon 76'. This gene, designated as Lr46, is the second named gene involved in slow-rusting resistance to leaf rust in wheat.  相似文献   

2.
Pavon76苗期抗小麦叶锈性基因的推导   总被引:1,自引:0,他引:1  
 选用19个具不同毒性基因组合的小麦叶锈菌致病类型对墨西哥品种Pavon76进行了抗叶锈性基因的推导。通过与48个抗叶锈单/双基因系的反应型比较,鉴定出该品种中可能含有Lr1、Lr3、L410、L413、Lr14a、Lr34LrB抗性基因。  相似文献   

3.
[目的]建立简单、快速、有效的小麦抗叶锈基因复合PCR体系,从而提高分子标记辅助选择效率。[方法]以28个‘Thatcher’为背景的近等基因系和16个已知基因载体品系作为试材,测试了小麦抗叶锈病基因Lr9、Lr26、Lr19和Lr20的STS标记特异性,通过优化PCR反应体系和循环条件,构建了抗叶锈基因Lr9-Lr26和Lr19-Lr20的复合PCR检测体系。对116个小麦品种(系)所含有的抗叶锈病基因进行了分子检测。[结果]供试品种均不含有Lr9和Lr20,47个品种含有Lr26(基因频率为40.5%),‘中梁22’含有Lr19。经反复验证,Lr9-Lr26和Lr19-Lr20复合PCR技术检测结果可靠,且与上述单个分子标记检测结果一致。[结论]建立的Lr9-Lr26和Lr19-Lr20的复合PCR检测体系可以准确、稳定、高效地检测小麦抗叶锈基因Lr9、Lr26、Lr19和Lr20。  相似文献   

4.
The development of the leaf rust fungus ( Puccinia recondita f.sp. tritici ) in a susceptible cultivar and three other cultivars possessing the Lr9, Lr20 and Lr28 alleles for resistance was studied by light and fluorescence microscopy. Formation of the substomatal vesicle, intercellular hypha and the first haustorial mother cell was unaffected by resistance. Lr9 and Lr28 expression was rapid, first seen as early initiation of hyphal branching at 16 h after inoculation, then reduced haustorial diameters at 19 h. Limited host cell necrosis was seen immediately afterwards. Elongation of intercellular hyphae was reduced between 20 and 24 h, and virtually ceased by about 30 h. Numbers of infection sites with a second haustorial mother cell were briefly higher at 24 h. Reduced hyphal branching and haustorial mother cell numbers were seen at 20–24 h and 36 h respectively. Lr20 expression was not seen until 36 h when reduced hyphal branching was observed, accompanied by extensive host cell necrosis. Reduced haustorial mother cell numbers were detected at 48 h. Findings suggested a secondary role for host cell necrosis in the expression of the Lr9 and Lr28 alleles. Host necrosis may play a determinant role in Lr20- based expression.  相似文献   

5.
6.
Kerber ER  Aung T 《Phytopathology》1999,89(6):518-521
ABSTRACT The common wheat cultivar Thatcher and the backcross derivative Canthatch are moderately or fully susceptible to several races of stem rust because of a suppressor on chromosome 7DL that inhibits the expression of the relevant resistance gene(s). The incorporation of leaf rust resistance gene Lr34 into 'Thatcher' is known to enhance stem rust resistance. The effect of this gene in a 'Canthatch' background and its relationship with the 7DL suppressor were determined by replacing chromosome 7D of 'Canthatch' with 7D of 'Chinese Spring', which possesses Lr34 on the short arm. 'Canthatch' nullisomic 7D was crossed with 'Chinese Spring', followed by a succession of backcrosses to the nullisomic recurrent parent. Homozygous resistant disomic and monosomic substitution lines were recovered that exhibited the same resistant reaction as that of 'Thatcher' possessing Lr34 and as that of 'Canthatch' nullisomic 7D, in which the 7DL suppressor is absent. The results indicate that, in 'Canthatch', Lr34 permits expression of resistance genes normally inhibited by the 7DL suppressor. Furthermore, it is likely that, in 'Thatcher' and 'Thatcher' back-cross derivatives, Lr34 inactivates the 7DL suppressor.  相似文献   

7.
Genetics of leaf rust resistance in spring wheat cultivars alsen and norm   总被引:3,自引:0,他引:3  
Oelke LM  Kolmer JA 《Phytopathology》2005,95(7):773-778
ABSTRACT Alsen is a recently released spring wheat cultivar that has been widely grown in the United States because it has resistance to Fusarium head blight and leaf rust caused by Puccinia triticina. Norm is a high yielding wheat cultivar that has been very resistant to leaf rust since it was released. Alsen and Norm were genetically examined to determine the number and identity of the leaf rust resistance genes present in both wheats. The two cultivars were crossed with leaf rust susceptible cv. Thatcher and F(1) plants were backcrossed to Thatcher. Eighty one and seventy three BCF(1) of Thatcher times; Alsen and Thatcher x Norm respectively, were selfed to obtain BCF(2) families. The BCF(2) families were tested as seedlings with different isolates of P. triticina that differed for virulence to specific leaf rust resistance genes. The BCF(2) families that lacked seedling resistance were also tested as adult plants in greenhouse tests and in a field rust nursery plot. Segregation of BCF(2) families indicated that Alsen had seedling genes Lr2a, Lr10, and Lr23 and adult plant genes Lr13 and Lr34. Norm was determined to have seedling genes Lr1, Lr10, Lr16, and Lr23 and adult plant genes Lr13 and Lr34. The characterization of Lr23 in the segregating populations was complicated by the presence of a suppressor gene in Thatcher and the high temperature sensitivity of resistance expression for this gene. The effective leaf rust resistance in Alsen is due to the interaction of Lr13 and Lr23, with Lr34; and the effective leaf rust resistance in Norm is due to the interaction of Lr13, Lr16, and Lr23, with Lr34.  相似文献   

8.
Thatcher near‐isogenic lines (NILs) of wheat carrying resistance gene Lr2a, Lr3, LrB or Lr9 were inoculated with Puccinia triticina races of virulence phenotype BBBD, MBDS, SBDG and FBDJ. Puccinia triticina infection structures were analysed under the fluorescence microscope over a course of 14 days after inoculation (dai). The relative proportion of P. triticina and wheat genomic DNA in infected leaves was estimated with a semiquantitative multiplex PCR analysis using P. triticina‐ and wheat‐specific primers. The occurrence of a hypersensitive response (HR), cellular lignification and callose deposition in inoculated plants was investigated microscopically. In interactions producing highly resistant infection type (IT) ‘0;’, a maximum of two haustorial mother cells per infection site were produced, and there was no increase in the proportion of P.  triticina genomic DNA in infected leaves, indicating the absence of P. triticina growth. In comparison, sizes of P. triticina colonies increased gradually in interactions producing moderately resistant IT ‘1’ and ‘2’, with the highest proportion of P. triticina genomic DNA found in leaves sampled at 14 dai. In interactions producing susceptible IT ‘3–4’, the highest proportion of P. triticina genomic DNA was found in leaves sampled at 10 dai (45·5–51·5%). HR and cellular lignification were induced in interactions producing IT ‘0;’ and ‘1’ at 1 dai but they were not observed in interactions producing IT ‘2’ until 2 dai. No HR or cellular lignification were induced in interactions producing susceptible IT ‘3–4’. Furthermore, a strong deposition of callose was induced in Lr9 + BBBD and Lr9 + FBDJ (IT ‘0;’), whereas this defence response was not induced in resistant or susceptible interactions involving Lr2a, Lr3 or LrB, indicating that Lr9 mediated resistance was different from that conditioned by Lr2a, Lr3 or LrB.  相似文献   

9.
ABSTRACT Leaf and stripe rusts, caused by Puccinia triticina and P. striiformis, respectively, are globally important fungal diseases of wheat that cause significant annual yield losses. A gene that confers slow rusting resistance to leaf rust, designated as Lr46, has recently been located on wheat chromosome 1B. The objectives of our study were to establish the precise genomic location of gene Lr46 using molecular approaches and to determine if there was an association of this locus with adult plant resistance to stripe rust. A population of 146 F(5) and F(6) lines produced from the cross of susceptible 'Avocet S' with resistant 'Pavon 76' was developed and classified for leaf rust and stripe rust severity for three seasons. Using patterns of segregation for the two diseases, we estimated that at least two genes with additive effects conferred resistance to leaf rust and three to four genes conferred resistance to stripe rust. Bulked segregant analysis and linkage mapping using amplified fragment length polymorphisms with the 'Avocet' x 'Pavon 76' population, F(3) progeny lines of a single chromosome recombinant line population from the cross 'Lalbahadur' x 'Lalbahadur (Pavon 1B)', and the International Triticeae Mapping Initiative population established the genomic location of Lr46 at the distal end of the long arm of wheat chromosome 1B. A gene that is closely linked to Lr46 and confers moderate levels of adult plant resistance to stripe rust is identified and designated as Yr29.  相似文献   

10.
Aegilops umbellulata, a non‐progenitor diploid species, is an excellent source of resistance to various wheat diseases. Leaf rust and stripe rust resistance genes from A. umbellulata were transferred to the susceptible wheat cultivar WL711 through induced homoeologous pairing. A doubly resistant introgression line IL 393‐4 was crossed with wheat cultivar PBW343 to develop a mapping population. Tests on BC2F7 RILs indicated monogenic inheritance of seedling leaf rust and stripe rust resistance in IL 393‐4 and the respective co‐segregating genes were tentatively named LrUmb and YrUmb. Bulked segregant analysis placed LrUmb and YrUmb in chromosome 5DS, 7.6 cM distal to gwm190. Aegilops geniculata‐derived and completely linked leaf rust and stripe rust resistance genes Lr57 and Yr40 were previously located in chromosome 5DS. STS marker Lr57/Yr40MAS‐CAPS16 (Lr57/Yr40‐CAPS16), linked with Lr57/Yr40 (T756) also co‐segregated with LrUmb/YrUmb. Seedling infection types differentiated LrUmb from Lr57. Absence of leaf rust‐susceptible segregants among F3 families of the intercross (IL 393‐4/T756) indicated repulsion linkage between LrUmb and Lr57. YrUmb expressed a consistently low seedling response under greenhouse conditions, whereas Yr40 expressed a higher seedling response. Based on the origin of LrUmb/YrUmb from the U genome and Lr57/Yr40 from the M genome, as well as phenotypic differences, LrUmb and YrUmb were formally named Lr76 and Yr70, respectively. These genes have been transferred to Indian wheat cultivars PBW343 and PBW550, and advanced breeding lines are being tested in state and national trials.  相似文献   

11.
ABSTRACT The genetic relationships between isolates of Puccinia triticina virulent on wheat with the Lr26 resistance gene were studied. The diversity within and between isolates of P. triticina from Israel, Europe, and the United States was determined by virulence on near-isogenic Thatcher lines and by random amplified polymorphic DNA. According to the molecular markers, isolates that were virulent on Lr26 had diversity levels similar to those of Lr26 nonpathogenic isolates. Distances between subpopulations of isolates virulent and avirulent on Lr26 varied and were unrelated to the Lr26 virulence phenotype. Cluster analysis suggested four groups, three of which were closely associated with the geographical origin of the isolates-Israel, the United States, and Europe. All four groups included both Lr26 virulent and avirulent pathotypes. The results showed that Lr26 virulent rust pathotypes are as genetically dissimilar as the rest of the population. The cluster analysis showed that the rust population in Israel includes at least two different subpopulations, both of which contain Lr26 virulent and Lr26 avirulent isolates.  相似文献   

12.
ABSTRACT Leaf rust and stripe rust, caused by Puccinia triticina and P. striiformis, respectively, are important diseases of wheat in many countries. In this study we sought to identify molecular markers for adult plant resistance genes that could aid in incorporating such durable resistance into wheat. We used a doubled haploid population from a Japanese cv. Fukuho-komugi x Israeli wheat Oligoculm cross that had segregated for resistance to leaf rust and stripe rust in field trials. Joint and/or single-year analyses by composite interval mapping identified two quantitative trait loci (QTL) that reduced leaf rust severity and up to 11 and 7 QTLs that might have influenced stripe rust severity and infection type, respectively. Four common QTLs reduced stripe rust severity and infection type. Except for a QTL on chromosome 7DS, no common QTL for leaf rust and stripe rust was detected. QTL-7DS derived from 'Fukuho-komugi' had the largest effect on both leaf rust and stripe rust severities, possibly due to linked resistance genes Lr34/Yr18. The microsatellite locus Xgwm295.1, located almost at the peak of the likelihood ratio contours for both leaf and stripe rust severity, was closest to Lr34/Yr18. QTLs located on 1BL for leaf rust severity and 3BS for stripe rust infection type were derived from 'Oligoculm' and considered to be due to genes Lr46 and Yr30, respectively. Most of the remaining QTLs for stripe rust severity or infection type had smaller effects. Our results indicate there is significant diversity for genes that have minor effects on stripe rust resistance, and that successful detection of these QTLs by molecular markers should be helpful both for characterizing wheat genotypes effectively and combining such resistance genes.  相似文献   

13.
冬小麦品种北京837抗叶锈病基因的染色体定位研究   总被引:2,自引:0,他引:2  
 1990~1993年间,引用中国春全套单体系列和抗叶锈病小麦近等基因系(或单基因系)为材料,采用单体遗传分析和基因推导相结合的方法,对冬小麦品种北京837抗叶锈病基因进行染色体定位研究,明确其对生理小种叶中1号的抗性系由分别位于染色体1B和6B上的两个显性互补基因所控制。位于1B染色体上的基因可能是Lr26,位于6B上的可能是Lr3a,二者可抵抗我国小麦叶锈菌群体中的部分生理小种(或毒性基因组合)。  相似文献   

14.
为明确春小麦品种沈免2063所含抗叶锈病基因的对数、身份、显隐性和互作关系,以沈免2063为父本,分别与感病品种Thatcher及小麦抗叶锈病近等基因系Lr9、Lr19、Lr24、Lr25、Lr28、Lr42和Lr43的载体品系杂交,获得F1、F2和F3代群体后,分别在苗期和成株期进行抗病性测定。结果表明:沈免2063含有3对显性遗传且相互独立作用的抗叶锈病基因Lr9、Lr19和Lr25,在苗期,沈免2063对致病类型CBG/QQ的抗病性由Lr9和Lr25控制,对PHT/RP的抗病性由上述3对抗叶锈病基因控制;在成株期,沈免2063对优势致病类型PHT/RP和THT/TP等比混合菌种的抗病性由上述3对抗叶锈病基因控制。Lr9、Lr19和Lr25在育成品种中出现频率很低,目前尚很有效,但这3个基因均为典型的垂直抗病性基因,应进行基因布局、基因轮换等科学组配,才能延长其使用寿命。  相似文献   

15.
Breeding for resistance is an efficient strategy to manage wheat leaf rust caused by Puccinia triticina f. sp. tritici. However, a prerequisite for the directed use of Lr genes in breeding and the detection of new races virulent to these Lr genes is a detailed knowledge on Lr genes present in wheat cultivars. Therefore, respective molecular markers for 18 Lr genes were tested for specificity and used to determine Lr genes in 115 wheat cultivars. Results obtained were compared to available pedigree data. Using respective molecular markers, genes Lr1, Lr10, Lr26, Lr34 and Lr37 were detected, but data were not always in accordance with pedigree data. However, leaf rust scoring data of field trials confirmed the reliability of DNA markers. These reliable marker data facilitated the analyses of the development of virulent leaf rust races from 2002 to 2009 based on released cultivars. A sudden change from low infection rates to susceptibility was observed for Lr1, Lr3, Lr10, Lr13, Lr14, Lr16, Lr26 and Lr37 since 2006. Cultivars carrying several leaf rust resistance genes showed no significant shift to susceptibility except one cultivar which revealed an increasing infection rate at a low level. In summary, it turned out that pedigree data are often not reliable and a detection of Lr genes by diagnostic markers is fundamental to combine Lr genes in cultivars for a durable resistance against leaf rust, and to conduct reliable surveys based on released cultivars, instead of ‘Thatcher’ NILs.  相似文献   

16.
Levels of individual phenolic acids were examined in primary leaves of wheat (Triticum aestivum) after inoculation with avirulent and virulent strains of the leaf rust fungus (Puccinia recondita f. sp. tritici) at stages when previous work had shown fungal and host cells to be affected by expression of the Lr20 or Lr28 alleles for resistance. The predominant phenolic acid, ferulic acid, as well as p-coumaric and syringic acids were detected in primary leaves in both unbound and bound forms. They were not detected in germinating urediniospores of either rust strain. Levels of unbound phenolic acids changed little in response to infection. In Lr28-bearing leaves inoculated with an avirulent strain, increased concentrations of bound phenolic acids and three other unidentified compounds were observed about 4 h after many single or small groups of cells had undergone hypersensitive collapse. In an Lr20-bearing cultivar, levels of bound phenolic acids fell in leaves inoculated with either a virulent or avirulent rust strain. Coniferyl aldehyde and coniferyl alcohol were not detected in healthy or inoculated leaves of either wheat cultivar. Attempts to affect expression of resistance by application of inhibitors of phenylalanine ammonia-lyase were not successful and both wheat cultivars remained resistant to avirulent rust strains. The bound phenolic acids which accumulate in cells undergoing a hypersensitive response may play a role in resistance of Lr28-bearing wheat to the leaf rust fungus.  相似文献   

17.
Genes for specific resistance to European and American isolates of Mycosphaerella graminicola , the causal agent of septoria tritici blotch (STB) of wheat, have been identified and mapped in various cultivars and breeding lines and are distributed throughout the genome. The location of a gene for resistance to an Ethiopian isolate, IPO88004, which is currently the most widespread resistance present in European wheat cultivars, is reported. The resistance was mapped in the Swiss cultivar Arina which, besides high partial resistance to STB, also has specific resistance to IPO323, controlled by Stb6 and to IPO88004. An F5 recombinant inbred population from a cross between Arina and the susceptible cultivar Forno was tested in whole seedling trials. Using multiple QTL mapping (MQM), a gene for resistance to M. graminicola isolate IPO88004 in cv. Arina was located to chromosome 6AS. The gene is named Stb15 . Seedling tests on a double haploid population of cvs Arina × Riband indicated that the UK wheat cv. Riband also has Stb15 or another gene for specific resistance to IPO88004 allelic or closely linked to Stb15 .  相似文献   

18.
Spring wheat seedlings containing Lr 20 and Sr 15 resistance alleles were raised at 30° C, prior to inoculation with leaf rust ( Puccinia recondita race 76–2,3) and stem rust ( Puccinia graminis f.sp, tritici race 343–1,2,3,5,6) pathogens, respectively. Infected plants were then grown at one of seven temperatures in the range 18–30 C and infection types were scored at 10 days post-inoculation. These results were compared with those obtained for plants raised at a pre-inoculation temperature of 18° C. In both 18° C and 30° C pre-grown plants, a progressive increase in infection type was observed on resistant lines as post-inoculation temperature increased. However, resistant lines raised at 30°C had significantly higher infection types than plants raised at 18° C at all post-inoculation temperatures for which some degree of resistance was still evident in the plants raised at 18°C, The maximum temperature for expression of resistance was significantly higher for Lr 20 than for Sr 15. irrespective of pre-inoculation temperature. A lowering of the resistance expression was also evident in Sr 15 -bearing lines raised at a very low pre-inoculation temperature (4°C). The effects of low pre-inoculation temperature on resistance were assessed in both winter and spring wheat lines. These results are discussed in the light of current ideas concerning the host membrane location of pathogen recognition events.  相似文献   

19.
小麦抗白粉病基因Pm21 的抑制基因   总被引:1,自引:0,他引:1  
 小麦-簇毛麦6VS. 6AL 易位染色体含有抗白粉病基因Pm21,在我国的小麦育种中被广泛应用。近年来,一些含有Pm21 基因的小麦品种(系)开始感染白粉病。为探索含Pm21 的品种(系)感染白粉病的原因,本研究在6VS. 6AL 易位系与小麦品系(种)R14 和川农12 的杂交后代中利用分子标记CINAU17-1086 和CINAU18-723 辅助选择的遗传背景相对简单的F7 和F8 近等基因系为材料,研究了小麦抗白粉病基因Pm21 的抗病性表达。结果发现,在3 个含有6VS. 6AL 易位染色体的感病F6 植株繁殖的F7 近等基因系中发生了白粉病抗性的分离,分离比率符合13 感病︰ 3 抗病的理论值。在随机选取的F7 感病小麦单株所繁殖的F8 近等基因系中,有7 / 13 的株系一致地重感白粉病,有6 / 13 的株系发生了抗白粉病的分离,其中2 / 13 的株系分离比符合3 感病︰ 1 抗病、4 / 13 的株系分离比符合13 感病︰ 3 抗病的分离模式。这一结果指出,小麦株系中的抗白粉病基因Pm21 的抗性表达受小麦基因组中的一对显性抑制基因所控制,该基因来源于小麦品种(系)川农12或R14,建议命名为SuPm21。本研究指出,在把外源基因引入小麦的研究中,有利的外源基因与不含抑制基因的受体遗传资源同等重要。  相似文献   

20.
Leaf rust caused by Puccinia triticina is a common disease on wheat in the coastal regions of Turkey. Collections of P. triticina from infected wheat leaves were obtained from the main wheat production zones of Turkey in 2009 and 2010. A total of 104 single uredinial isolates were tested for virulence on 20 lines of Thatcher wheat that differ for single leaf rust resistance genes. Forty-four different virulence phenotypes were identified over both years. Four phenotypes were found in both years. Phenotype FHPTQ found in 2009, with virulence to genes Lr2c, Lr3, Lr16, Lr26, Lr3ka, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr3bg, and Lr14b, was the most common phenotype at 15.4 % of the total isolates. Forty-three winter and spring wheat cultivars from Turkey were tested as seedlings with 13 different P. triticina virulence phenotypes from Canada, the US and Turkey. The infection types on the cultivars were compared with infection types on the Thatcher near isogenic lines to postulate the presence of seedling leaf rust resistance genes in the cultivars. Resistance genes Lr1, Lr3a, Lr10, Lr14a, Lr17a, Lr20, Lr23, and Lr26 were postulated to be present in the Turkish wheat cultivars. DNA of the wheat cultivars was tested with PCR markers to determine the presence of the adult plant resistance genes Lr34 and Lr37. Marker data indicated the presence of Lr34 in 20 cultivars and Lr37 in three cultivars. Field plot evaluations of the wheat cultivars indicated that no single Lr gene conditioned highly effective leaf rust resistance. Resistant cultivars varied for combinations of seedling and adult plant resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号