首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
玉米幼苗对短暂供锌的反应及缺锌后再供锌的恢复   总被引:2,自引:0,他引:2  
王景安  张福锁 《土壤肥料》2000,(3):25-27,40
用溶液培养的方法研究了玉米幼苗对短暂供锌的反应及缺锌后再供锌的恢复结果。结果表明:10~12小时的正常供锌后再缺锌培养,对玉米幼苗的危害比一直缺锌的还大;缺锌培养使玉米功苗出现缺锌症状后再正常供锌,可使之恢复,低锌使玉米出现的缺锌症状比缺锌培养的更难以恢复,证明低锌比缺锌对玉米造成的危害更大,缺锌使玉米的有机酸分泌增加,低锌增加的更多。  相似文献   

2.
缺锌与低锌对玉米苗期生长发育的影响   总被引:2,自引:0,他引:2  
用溶液培养的方法研究了缺锌、低锌和正常供锌对玉米生长发育的影响.结果表明:缺锌和低锌使玉米的株高和茎叶干重均显著降低,低锌比缺锌降低的更多;缺锌和低锌对根干重的影响远小于对地上部的影响,所以,使根冠比增大,缺锌和低锌对玉米生长发育的这种影响与其影响玉米体内的锌含量有关,而且这种影响因玉米的品种不同而有差异.  相似文献   

3.
缺锌与低锌对玉米苗期生长发育的影响   总被引:16,自引:2,他引:14  
用溶液培养的研究了缺锌,低锌和正常供锌对玉米生长发育的影响。结果表明:缺锌和低锌使玉米的株高和茎叶干重均显著降低,低锌比缺锌降低的更多,缺锌和低锌对根干重的影响远小于对地上部的影响,所以,使根冠比增大,缺锌和低锌对玉米生长发育的这种影响与其影响玉米体内的锌含量有关,而且这种影响因玉米的品种不同而差异。  相似文献   

4.
低锌和缺锌胁迫对不同基因型玉米的影响及机理   总被引:10,自引:0,他引:10  
房蓓  武泰存  王景安 《土壤通报》2004,35(5):617-621
以两种不同基因型玉米(唐玉10号、博丰12号)为材料,用溶液培养的方法研究了低锌、缺锌和正常供锌对玉米生长发育的影响,并对两品种的SOD同工酶谱和蛋白质表达进行了分析。结果表明:一定浓度的低锌比缺锌对玉米危害更大,但不同基因型玉米对此敏感性不同,博丰12号表现出这种现象相对迟缓,而唐玉10号表现得迅速。与正常供锌相比,低锌处理时唐玉10号和博丰12号的一些SOD同工酶的活性降低,但博丰12号的一个SOD同工酶的活性明显提高,而缺锌对两品种的SOD同工酶谱影响不大。SDS-PAGE分析表明,低锌或缺锌处理时两种不同基因型玉米都有一些蛋白质组分增加或缺失。  相似文献   

5.
采用螯合-缓冲营养液培养方法对小麦进行了苗期培养试验,在3个磷水平(0、0.6 mmol·L-1、3.0mmol·L-1)和3个锌水平(0、3μmol·L-1、30 μmol·L-1)的完全组合下对小麦苗期的磷-锌关系进行了研究,以期为提高小麦籽粒锌的生物有效性提供理论依据.结果表明,与正常磷锌供应比较,磷锌的缺乏与过量均不利于小麦生长,缺磷比过量供磷的抑制程度更大,而过量供锌比缺锌的影响更为强烈,缺磷和过量供锌主要影响小麦幼苗的分蘖和地上部干物质的积累.过量供磷时,小麦根部存在明显的磷-锌拮抗,抑制了根部对锌的吸收,但磷的供应却提高了锌在小麦植株体内向地上部的转运;缺锌时,小麦叶片会积累大量磷,而供锌后则会抑制磷在小麦植株体内向地上部的转运.在小麦苗期,磷、锌均处于正常水平时其交互作用有利于锌的吸收和向地上部转运,但抑制了磷向叶部的转运.此外,磷、锌的缺乏均降低了叶绿素SPAD值,而磷的正常供应和锌的供应促进了叶绿素的合成.缺磷胁迫时小麦叶片的SOD和POD活性较高,而CAT活性较低;锌缺乏和过量时叶片SOD活性较低,而缺锌时POD和CAT活性较高,供锌后二者活性降低.总之,磷-锌拮抗作用主要发生在小麦根部,但在其他器官内也会发生;且不仅在二者配比不合理时发生,即使在配比合理时也会发生.  相似文献   

6.
供锌水平对番茄果实抗氧化性及风味品质的影响   总被引:3,自引:1,他引:2  
为研究不同供锌水平对番茄产量及果实风味品质的影响,设置了不同的硫酸锌浓度的溶液培养试验。结果表明,无论缺锌还是多锌处理,番茄叶片叶绿素含量均显著下降;MDA含量显著上升,POD酶活性下降,以缺锌处理较为明显;缺锌处理SOD酶活性显著低于对照,而多锌处理稍高于对照,产量均下降。缺锌和多锌处理番茄果实的酸度增加,Vc含量降低;缺锌处理可溶性固形物显著下降,而多锌处理与正常处理没有差别。此外,缺锌和多锌处理果实中的番茄红素、总酚和总黄酮含量均低于正常处理,而抗氧化力没有差别,果实的芳香物质种类组成也发生了变化。说明适宜的锌水平是保证番茄高产、优质的重要因素。  相似文献   

7.
选择 土为供试土壤, 进行盆栽玉米试验, 设定0和5.0 mg·kg-1两个锌处理, 按土壤饱和持水量的40%~45%和70%~75%在玉米的4叶1心期实施干旱和正常水分处理。生长50 d后, 测定不同土壤水分与锌供应状况下植株生物量和锌含量, 利用透射电子显微镜观察完全伸展新叶的超微结构变化, 以期揭示不同土壤水分供应下, 植物对施锌的响应机理。结果表明: 土壤水分供应充足条件下, 与不施锌相比, 施锌玉米地上部生物量和总干重分别增加78%和52%, 根系和地上部锌含量和锌吸收量增加较多; 而干旱条件下, 施锌对玉米生物量无显著影响。干旱条件下缺锌玉米叶片维管束鞘细胞中叶绿体结构基本保持完好, 淀粉粒和基质片层清晰可见, 但叶肉细胞中叶绿体膜受损, 基质片层结构出现皱缩, 基粒片层减少; 施锌玉米叶片维管束鞘细胞中叶绿体结构保持完好, 叶绿体周围的线粒体数目较多, 叶肉细胞中叶绿体中脂肪颗粒增多, 叶片维管束鞘细胞与叶肉细胞之间可见清晰的胞间连丝。土壤水分充足处理下, 缺锌叶片细胞膜出现皱缩, 维管束鞘细胞叶绿体淀粉粒增多, 片层结构受损, 严重时维管束鞘细胞中内溶物消失, 残存的叶绿体中仅有淀粉粒和少许片层; 叶肉细胞中叶绿体可见淀粉粒, 但片层结构少, 有些出现断裂、收缩。土壤水分充足条件下, 施锌玉米维管束鞘核叶肉细胞结构清晰, 叶绿体结构完整。结论认为: 锌对干旱胁迫下玉米叶片细胞结构的破坏有一定的缓解作用; 但土壤水分正常供应下, 缺锌导致细胞结构受损程度比干旱情况下更严重。  相似文献   

8.
水稻耐低锌基因型的生长发育和若干生理特性研究   总被引:11,自引:1,他引:10  
在不同Zn2+活度(pZn2+9.7,pZn2+11.0和pZn2+>11.5)的溶液培养条件下,研究了水稻耐低锌基因型的生长发育和若干生理特性。结果表明:水稻锌营养存在明显的基因型差异,降低锌离子活度会增加地下部于物质的积累,当Zn2+活度从pZn2+9.7下降到pZn2+11.0时,耐低锌品种的地上部干重虽下降,但因地下部干重显著增加,故总干重相近;锌敏感品种则地上部干重显著下降,而地下部干重增加不明显,总干重显著下降。当严重缺锌(pZn2+>11.5)时,所有基因型水稻的干重构极显著地下降,但锌敏感品种比耐低锌品种下降得更多。降低Zn2+活度使水稻秧苗的出叶速度减慢,在极度缺锌条件下,敏感品种只能生长到3.5叶,而耐低锌品种能生长到4.5叶左右。对叶绿素和根系氧化力的测定结果表明,轻度缺锌或缺锌初期会使叶绿素含量上升和根系氧化力下降,但严重缺锌时,则使叶绿素含量显著降低,而使根系氧化力明显增加。锌敏感品种比耐缺锌品种的变化更为明显。锌离子活度对秧苗的含水量也有明显的影响。因此,耐低锌基因型在低Zn2+活度条件通过保持较低的根氧化作用,促进根系生长以维持地上部新叶生长,达到低锌适应稳态。  相似文献   

9.
不同水分状况下施锌对玉米生长和锌吸收的影响   总被引:3,自引:3,他引:3  
选择潮土(砂壤)和土(粘壤)两种质地不同的土壤,进行盆栽试验,研究不同土壤水分条件下施锌对玉米生长和锌吸收的影响。结果表明,施锌显著增加了玉米植株根、茎、叶以及整株干物质重;缺锌条件下玉米植株根冠比、根叶比和根茎比趋向增大。施锌显著提高了玉米植株各器官中锌的浓度和吸收量,并明显促进锌向地上部运移。干旱胁迫抑制了玉米植株生长,根冠比、根茎比、根叶比增大;随着土壤水分供应增加,植株生长加快,各器官生物量以茎和叶增加大于根。水分胁迫下,在潮土上玉米叶片中锌浓度上升;在土上叶片中锌浓度下降。但增施锌后,根和茎锌浓度增加幅度较大,叶片增加幅度较小;施锌和水分胁迫对根和茎锌浓度的交互作用极显著。水分胁迫下,玉米植株对锌的吸收总量减少。水分胁迫和锌肥施用对玉米叶片、茎锌吸收量的交互作用十分显著,但对根锌吸收量的交互影响不显著。  相似文献   

10.
利用螯合–缓冲营养液对小麦苗期磷–锌关系的研究   总被引:1,自引:0,他引:1  
采用螯合缓冲营养液培养技术(Chelator-buffer culture solution),对小麦幼苗植株的磷锌营养进行了探讨。结果表明,高磷条件下小麦出现的缺锌黄化与磷中毒症状之间存在着明显区别,本研究结果支持高磷条件下作物出现的黄化是锌缺乏症状而非磷中毒的观点。与缺磷相比,正常供磷促进了小麦的生长,但过量磷对小麦生长有阻碍作用,而且锌的供应加剧了促进或抑制的程度。正常供应磷、锌条件下,小麦幼苗根系或地上部的磷、锌含量、吸收量及转运率均处于相对较高的水平,其余各处理则因为磷或锌供应量不适宜而使植株的磷、锌营养受到不同程度的影响。另外,磷锌相互拮抗的作用方式及大小程度不同:磷主要影响小麦根系对锌的吸收,而锌对小麦磷营养的影响主要是通过对其从根系向地上部转运的抑制来实现的;磷对锌的影响要明显大于锌对磷的影响,磷素水平在小麦的磷、锌营养平衡中起着更为重要的作用。磷锌拮抗作用只在双方供应不适宜的情况下发生,而且相互作用的方式及程度存在明显差异。  相似文献   

11.
Abstract

Zinc toxicity of peanuts (Arachis hypogaea L.), resulting from excessive amounts of Zn applied to previous crops, has been observed for many years in a limited number of peanut fields in Georgia. A tentative critical value of 12 mg/kg of Mehlich No.1 extractable soil Zn has been reported, but soil pH should be considered in establishing a more precise critical value since availability of soil Zn is affected greatly by soil acidity. A 3‐year study was conducted on a Tifton loamy sand (thermic, Plinthic Paleudults) to evaluate the relationship between soil pH and soil Zn on concentration of Zn in peanut leaves. Factorial treatments were 0, residual, medium, and high rates of Zn and soil pH levels near 5.5, 5.9, 6.2, and 6.8. Pod yields were not affected by treatments and Zn toxicity was not observed. Leaf Zn was affected more by soil pH than by soil Zn, but correlation coefficients were highest where both soil pH and soil Zn were included in the determination. A regression equation, based on soil pH and soil Zn, showed that an increase in soil Zn from 1.0 to 10.0 mg/kg increased leaf Zn 202 mg/kg at soil pH 4.6 and only 9 mg/kg at pH 6.6. Data from growers’ fields, in which samples were collected from eight healthy and toxic areas, indicated that a leaf Ca:Zn ratio of 50 or less was required for Zn toxicity of peanuts rather than high concentrations of leaf Zn per se.  相似文献   

12.
Abstract

Many soil extractants have been developed for determination of zinc (Zn) availability to plants. The optimum soil Zn extractant should be useful not only for prediction of plant Zn concentration but also for detection of applied Zn levels. The objectives of this study were: i) to compare soil Zn extradants for detecting applied Zn and for predicting peanut leaf Zn over a range of soil pH levels, and ii) to correlate other soil‐extractable Zn levels with Mehlich‐1. Soil and peanut leaf samples were taken from a field study testing pH levels as the main plots and Zn application rates in the sub‐plots. Extractable Zn was determined on soil samples using Mehlich‐1, Mehlich‐3, DTPA, MgNO3, and many dilute salt extradants of varied strength and pH. Correlation of extractable soil Zn to cumulative applied Zn levels revealed Mehlich‐1, Mehlich‐3, DTPA, and AlCl3 extradants to be among the best indicators of applied Zn. Leaf Zn concentration was best correlated with soil Zn extracted by dilute salts, such as KCl, CaCl2, NH4Cl, CaSO4, and MgCl2. Including soil pH as an independent variable in the regression to predict leaf Zn considerably improved R‐square values. The DTPA‐extractable soil Zn levels were very well correlated with Mehlich‐1‐extractable Zn. Mehlich‐3 extracted about 20% more soil Zn than Mehlich‐1, but Mehlich‐3 soil Zn was not as well correlated to Mehlich‐1 soil Zn as DTPA soil Zn. Lower pH solutions extracted more of the applied Zn, but more neutral solutions extracted Zn amounts which were better correlated with Zn uptake. On the other hand, Mehlich‐1, which had a lower pH, had better correlations with both applied Zn and leaf Zn than did Mehlich‐3. Shortening the DTPA extraction time to 30 minutes resulted in better correlations than the standard two hour extraction time. Chloride (Cl) was the best anion tested in relation to soil applied Zn recovery in combination with potassium (K), calcium (Ca), and aluminum (Al), and Cl optimized leaf Zn correlations for ammonium (NH4), K, Ca, and magnesium (Mg). The larger the valence of the cation, the better the correlation with applied Zn and the poorer the correlation with leaf Zn.  相似文献   

13.
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.  相似文献   

14.
不同白菜品种对锌的响应及锌利用效率研究   总被引:2,自引:0,他引:2  
采用盆栽试验研究了白菜[Brassica campestris L.ssp.Chinensis(L.)Makino]4个品种对不同浓度锌(Zn 0、1、10 mg/kg)的响应.结果表明,白菜的生物量及体内锌含量随锌水平的增加而增加;但白菜品种对锌营养反应的敏感性不同.地上部锌含量、锌积累量和锌吸收效率均以日本华冠(J...  相似文献   

15.
Abstract

Z1nc (Zn) deficiency of corn (Zea mays L.) has been detected in 20 or more states 1n the United States including Georgia. Since soil pH is a major factor in assessing the availability of soil Zn, this measurement has been included with acid extractable soil Zn in developing calibration Zn soil tests in North Carolina and Virginia. The objectives of this study were to develop a reliable soil test for Zn based on soil pH and Mehlich 1 soil Zn for corn gown on coarse‐textured soils and to compare our soil test values with those recently published from North Carolina where Mehlich 3 was the extractant. The study was conducted 1n 1979 to 1981 on a Tifton loamy sand (Plinthic Paleudult) site which had been used to study the influence of lime rates on micronutrient availability since 1970. Treatments consisted of four soil pH levels ranging from 5.3 to 6.6 and soil Zn levels ranging from 0.5 to 4.9 mg/kg. The Zn levels were established from the previous study where 5.6 kg Zn/ha had been applied annually for eight years (residual treatment) and by applying 3.36 or 6.72 kg Zn/ha during 1979, 1980 and 1981.

Soil Zn, corn shoot, and ear leaf Zn values were reflective of the amount of Zn applied except that the residual Zn treatment resulted in Zn concentrations > than the annual application of 3.36 kg Zn/ha. Zinc tended to accumulate in the soil and in corn leaf tissue more from the residual Zn than the recently applied Zn treatments, especially at the highest pH levels. Increasingly more soil Zn was required to increase corn shoot and ear leaf Zn one mg/kg as soil pH increased. In the initial year, each unit (kg/ha) of applied Zn increased corn shoot Zn approximately 4 units (mg/kg) at pH 5.3 and only 0.3 unit at pH 6.6. Zinc deficiency symptoms developed in corn shoots for the two highest soil pH levels in two of three years. Corn yields were increased by Zn only in 1980 and were increased by residual or applied Zn at pH levels of 6.2 and 6.6. Regression equations from these studies were utilized to develop predictive corn shoot and ear leaf Zn values over wide ranges in soil Zn and pH. Our field research data using Mehlich 1 extractant could possibly be used satisfactorily in North Carolina regression equations where Mehlich 3 was the extractant; however, certain limitations would need to be imposed in the North Carolina equations.  相似文献   

16.
用溶液培养法研究不同Zn浓度对玉米缺Zn后恢复效果及胚乳在缺Zn中作用结果表明,不同基因型玉米缺Zn后恢复所需的适宜Zn浓度不同,敏感品种比非敏感品种要求更高的Zn浓度。缺Zn后恢复所需适宜Zn浓度高于正常培养所需适宜Zn浓度,低浓度Zn(0.1μmol/L)无恢复作用(生物量)。带上胚乳使敏感品种在缺Zn、低Zn下受抑程度(缺Zn与供Zn生物量差值)提高,而非敏感品种受抑程度反而减小。缺Zn与低Zn培养时体内P含量提高,胚乳可缓解这种影响。缺Zn后再供Zn可使体内Zn含量提高,而P含量降低,玉米对Zn产生奢侈吸收,使体内Zn含量超过正常供Zn水平,表明缺Zn后植物对Zn的要求提高。0.1μmol/L Zn恢复对“吉单120”玉米Zn含量无明显影响,但“辽单22”玉米Zn含量显著提高,这表明非敏感品种比敏感品种利用低Zn的能力更强。  相似文献   

17.
Abstract

The experiment was carried out to evaluate the effects of fungicides [with or without zinc (Zn)] and different Zn fertilizer application methods (no fertilizer; soil application; shoot application; soil plus shoot application) on the soluble and total Zn in the dry matter of potato shoots. Zinc fertilizer was applied to the shoots at 20 and 45 days after plant emergence (DAE), immediately before plant sampling. At 25 DAE, Zn fungicide increased soluble and total Zn in the fourth leaf. The same occurred, at 45 DAE, with the Zn fertilizer applied to the shoots. It were not observed significant increases on both soluble and total Zn contents in the fourth leaf of plants that received soil Zn fertilization. Even in the leaves with 262 mg Zn kg‐1, there was no phytotoxicity symptoms. The total Zn concentration at 20 DAE was the best index correlated to potato tuber yield reaching 50.9 mg Zn kg‐1 in the fourth leaf of plants at the highest marketable tuber yield treatment. Plant nutrient element contents [phosphorus (P), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), and manganese (Mn)] were not affected by the treatments.  相似文献   

18.
Abstract

Maize (Zea mays L.) was greenhouse cultivated with doses of 5, 10, and 15 ppm of zinc (Zn) in order to test the effectiveness of laboratory‐prepared coated and uncoated Zn fertilizers with commercial Zn‐EDTA and Zn‐ligno‐sulphonate (LS). Large increases were achieved both in crop yield and in Zn uptake in all cases while a large part of the Zn applied remained in the soil in easily plant‐available forms. Positive significant correlations were obtained between available Zn and the first three sequentially extracted fractions (water soluble plus exchangeable, organically complexed and that associated to amorphous sesquioxides) and also between the variables, yield, Zn concentration, and plant Zn uptake. Zinc uptake by the maize plants can be fairly accurately predicted from its sequential fractioning in the soil using an equation obtained by multiple regression analysis. Consideration of the amounts of Zn remaining as available (DTPA extractable) in the soil and results of a plant analysis let us conclude that under the conditions of our tests, Zn‐EDTA is a better Zn source than Zn‐LS. In addition, coating of Zn‐EDTA products with rosin improves their performance.  相似文献   

19.
Abstract

A significant portion of chemical zinc (Zn) fertilizers applied to calcareous soils is not absorbed by the first crop and may, therefore, affect the growth and chemical composition of the subsequent crops. This is called the residual effect of Zn. Soil tests may be used to predict such effects. The present experiment was conducted to study the residual effects of zinc sulfate (ZnSO4) on the second crop of corn (Zea mays L.) grown on selected highly calcareous soils of Iran and to compare the suitability of three soil tests for prediction of the effects. Twenty highly calcareous soils of southern Iran (16–58% calcium carbonate equivalent; pH 7.9–8.5), previously treated with three levels of Zn (0, 10, and 20 mg Zn/kg as ZnSO4) and under one crop of corn, was used in greenhouse to grow a second crop of corn without additional Zn fertilizer but with uniform application of nitrogen (N), phosphorus (P), and iron (Fe). Soils were sampled before the second crop and extracted with three Zn extradants, DTPA, EDTA‐(NH4)2CO3, and EDTA. Dry weight of plant tops and Zn concentration and uptake after eight weeks under the greenhouse conditions were used as the plant responses to residual Zn. Statistical analyses including F‐test and multiple regression equations showed that the overall effect of previously‐applied Zn on dry matter was nonsignificant, but Zn concentration and uptake were significantly increased. The three soil tests predicted the Zn concentration and uptake equally well. Moreover, DTPA and EDTA soil tests could predict the dry matter of plants at the highest level of previuosly‐applied Zn (20 mg Zn/kg), especially when selected chemical properties of soil, namely, calcium carbonate equivalent or organic matter content, were considered in the regression equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号