首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

2.
Hot pepper is the most important worldwide grown and consumed spice and vegetable crop. Though hybrid breeding has been proposed for genetic improvement in the crop, but there is lack of information on heterosis in crosses among crop genotypes in Ethiopia. Twelve genotypes (nine Asian and three Ethiopian parents) of hot pepper were crossed in 2003 cropping season in a half-diallel fashion to fit Griffing’s fixed effect model analysis. An open field experiment was conducted in 2004/2005 to investigate heterosis for fourteen traits in 66 F1 hybrids grown together with their 12 selfed parents. Highly significant genotypic differences were observed for all the traits except for leaf area. Variance component due to specific combining ability (dominance) were larger than that due to general combining ability (additive) for each of the studied traits with few exceptions. Broad sense heritability (H b2) for fruit traits were more than 60% and with wide gap from narrow sense heritability (h n2) for most of the important traits like number of fruit per plant (H b2 = 88.3% and h n2 = 46.0%), days to maturity (H b2 = 87.2% and h n2 = 23.1%) and dry fruit yield per plant (H b2 = 72.6% and h n2 = 14.6%). Maximum heterosis over mid-parent and better-parent, and economic superiority of hybrid over standard check were recorded, respectively for dry fruit yield per plant (163.8, 161.8 and 92.1%), number of fruits per plant (104.4, 79.6 and 136.4%) and days to maturity (−29.8, −31.5 and −23.6%). These observations suggested a possibility of utilizing dominance genetic potentiality available in diverse genotypes of the crop by heterosis breeding for improving hot pepper to the extent of better economic return compared to the current commercial cultivar under production in the country. Low narrow sense versus very high broad sense heritability for days to maturity and dry fruit yield per plant could be a sign for achievability of earliness and high fruit yield using heterosis in hot pepper. The maximum heterobeltiosis were recorded either from F1s obtained from Ethiopian and Asian crosses or from within Asian crosses, suggesting the possibility of maximizing heterosis by considering genetically diverse parental genotypes. The manifestation of highest heterosis in hybrids from among Asian lines indicated existence of genetic diversity among Asian genotypes and the potentiality for improvement of hot pepper using genotypes from different regions of the world along with elite inbred lines from local cultivars.  相似文献   

3.
A tomato cultivar with high quality fruit and a long shelf life is a main goal in tomato breeding and it would be achieved using wild germplasm. The objective of this work was to explore the inheritance for fruit quality traits, especially fruit shelf life, in three tomato crosses using a standard Argentinean cultivar (Ca, cv ‘Caimanta’), a ripening mutant (nor, homozygous for the nor gene) of Solanum lycopersicum, and a wild cherry type (Ce, LA1385 of S. lycopersicum var. cerasiforme). The wild parent had a shorter fruit shelf life than the mutant genotype but higher than Ca. When the Ce genotype was analyzed in hybrid combination, the F1 (Ca×Ce) was similar to the wild genotype for shelf life whereas the F1 (nor × Ce) had a longer shelf life. Both F1 crosses and backcrosses to the cherry type genotype had significantly lower fruit weight than the cultivated genotypes but higher than the cherry type parent. In the F2 analysis, it was found that the inheritance underlying quality traits is complex since non allelic interactions were detected. A significant additive genetic variance was found for fruit shelf life as well as for other fruit quality traits in each cross. The genetic parameters analyzed by mean values and variances in parental, F1 and F2 and backcross generations indicated that the cross between the normal ripening cultivar and LA1385 of S. lycopersicum var. cerasiforme offers the best possibility to obtain long shelf life tomato genotypes with good fruit quality.  相似文献   

4.
Beta vulgaris genetic resources are essential for broadening genetic base of sugar beet and developing cultivars adapted to adverse environmental conditions. Wild beets (sea beets, B. vulgaris spp. maritima and their naturalized introgressions with cultivated beets known as ruderal beets) harbor substantial genetic diversity that could be useful for beet improvement. Here, we compared molecular and morpho-physiological traits of wild beets collected on the Adriatic coast of Italy with sugar beet using eight primer-pairs amplifying 194 polymorphic fragments and four root traits (glucose and fructose content in the root tip, root elongation rate, number of the of root tips, total root length and its distribution among diameters ranges). Genetic diversity was higher in the sea beet accession, which may be due to the highly variable selection pressures that occur in heterogeneous ecological niches, compared with the ruderal and cultivated beets. Sea and sugar beet accessions showed contrasting root patterns in response to sulfate deprivation: sugar beet showed an increase of reducing sugars in the root tips and higher root elongation rate, and the sea beet accession showed an increase in root tip number, total root length and fine root length (average diameter < 0.5 mm). The ruderal beet showed intermediary responses to sea and sugar beet accessions. AFLP and morpho-physiological cluster analyzes showed sea, ruderal and cultivated beets to be genetically distinct groups. The results of this study indicate variability in response to sulfate deprivation is present in undomesticated beets that could be deployed for sugar beet improvement.  相似文献   

5.
The genus Pistacia (Anacardiaceae) includes 11 species divided into four sections, according to leaf characters and nut morphology. Recently two monophyletic groups have been proposed by using cpDNA,Lentiscus and Terebinthus,containing evergreen and deciduous species, respectively. In the present work molecular markers, derived from two different methods, RAPD and AFLP, are used to study the relationships of native and introducedPistacia species present in Greece. According to the cophenetic correlation coefficients best results for both methods were obtained by using the Jaccard algorithm and the UPGMA clustering method. However, phenograms were constructed using the NJ method (rcs= 0.987 for RAPDs and rcs= 0.982 for AFLP), since it is less sensitive against varying mutation rates. Correlation among the genetic similarity (GS) matrices for the two methods was high(r = 0.941). The AFLP and RAPD phenograms were comparable with minor clustering differences. According to our results, two main branches are obtained, one containing the evergreen species P. lentiscusand the resin producing P. lentiscuscv. Chia (cultivated only in the island of Chios), and the other branch containing the deciduous species P. terebinthus,P. palaestina and P. vera, P. chinensis was clustered either with the evergreen species (RAPD data) or with the deciduous species (AFLP data). P. palaestina is clustered to P. terebinthus and can be considered as a subspecies of P. terebinthus, since its GS values are close or smaller than GS values of entries within species (P. vera). The four female cultivars were found to have a narrow genetic basis, probably related to cultivar ‘Nazareth‘ with Syrian origin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Zea mays ssp. mexicana, an annual wild relative of maize, has many desirable characteristics for maize improvement. To transfer alien genetic germplasm into maize background, F1 hybrids were generated by using Z. mays ssp. mexicana as the female parent and cultivated maize inbred line Ye515 as the male parent. Alien introgression lines, with a large range of genetic diversity, were produced by backcross and successive self-pollinations. A number of alien introgression lines with the predominant traits of cultivated maize were selected. Genomic in situ hybridization (GISH) proved that small chromosome segments of Z. mays ssp. mexicana had been integrated into the maize genome. Some outstanding alien introgression lines were evaluated in performance trials which showed 54.6% hybrids had grain yield greater than that of hybrid check Yedan12 which possessed 50% Ye515 parentage, and 17.1, 9.9% hybrids had grain yield competitive or greater than those of Nongda108 and Zheng958, which were elite commercial hybrids in China, respectively. The results indicated that some of the introgression lines had excellent agronomic traits and combining ability for maize cultivar, and demonstrated that Z. mays ssp. mexicana was a valuable source for maize breeding, and could be used to broaden and enrich the maize germplasm.  相似文献   

7.
Intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey] plant introductions (PI) have played a critical role in the development of improved intermediate wheatgrass cultivars. The objective of this study was to characterize a large number of intermediate wheatgrass populations over its native range for dry matter yield (DMY), crude protein (CP), in vitro true digestibility (IVTD), neutral detergent fibre (NDF), and rhizome development and genetic diversity and structure to identify superior populations and possible geographical regions in which to collect. Analysis of molecular variance using 643 AFLP bands partitioned 31% of the total genetic variation among these populations with 69% variance detected within populations. Bayesian cluster analysis identified two large groups designated as Asian and European under K = 2. In general, European accessions had greater DMY than did Asian accessions. Observed trends were towards greater CP values in populations with Asian ancestry. Selection index values above zero were observed in populations with European ancestry, and the exception was the late‐maturing (208 days to bloom) populations with Asian ancestry. Plant populations 383 551, 383 561, 401 161, 401 173, 440 021, 578 692 (cv. Tegmar) and 598 740 had rhizome scores greater than 7.0. Despite significant differences detected between populations (ΦST = 0.3136; P < 0.001), there was strong indication of admixed co‐ancestry or possible gene flow between K = 2–9 models.  相似文献   

8.
9.
The cultivated sugarcane (Saccharum spp. hybrids, 2n = 100–130) is one crop for which interspecific hybridization involving wild germplasm has provided a major breakthrough in its improvement. Few clones were used in the initial hybridization event leading to a narrow genetic base for continued cultivar development. Molecular breeding would facilitate the identification and introgression of novel alleles/genes from the wild germplasm into cultivated sugarcane. We report the identification of molecular markers associated with sugar-related traits using an F1 population derived from a cross between S. officinarum ‘Louisiana Striped’ × S. spontaneum ‘SES 147B’, the two major progenitor species of cultivated sugarcane. Genetic linkage maps of the S. officinarum and S. spontaneum parents were produced using the AFLP, SRAP and TRAP molecular marker techniques. The mapping population was evaluated for sugar-related traits namely, Brix (B) and pol (P) at the early (E) and late (L) plant growing season in the plant cane (04) and first ratoon (05) crops (04EB, 04LB, 04LP, 05EB and 05EP). For S. officinarum, combined across all the traits, a total of 30 putative QTLs was observed with LOD scores ranging from 2.51 to 7.48. The phenotypic variation (adj. R2) explained by all QTLs per trait ranged from 22.1% (04LP) to 48.4% (04EB). For S. spontaneum, a total of 11 putative QTLs was observed with LOD scores ranging from 2.62 to 4.70 and adj. R2 ranging from 9.3% (04LP) to 43.0% (04LB). Nine digenic interactions (iQTL) were observed in S. officinarum whereas only three were observed in S. spontaneum. About half of the QTLs contributed by both progenitor species were associated with effects on the trait that was contrary to expectations based on the phenotype of the parent contributing the allele. Quantitative trait loci and their associated effects were consistent across crop-years and growing seasons with very few QTLs being unique to the early season. When the data were reanalyzed using the non-parametric discriminant analysis (DA) approach, significant marker-trait associations were detected for markers that were either identical to or in the vicinity of markers previously identified using the traditional QTL approach. Discriminant analysis also pointed to previously unidentified markers some of which remained unlinked on the map. These preliminary results suggest that DA could be used as a complementary approach to traditional QTL analysis in a crop like sugarcane for which saturated linkage maps are unavailable or difficult to obtain.  相似文献   

10.
Wild soybean (Glycine soja), as the progenitor of soybeans (G. max), is widely distributed in China and has been collected as a supplementary germplasm pool of soybeans. In this study, 375 wild soybean accessions from a set of genebank core collection were analysed for genetic diversity by using 42 simple sequence repeat primer pairs. The mean allele number per locus was 19.62. Ten‐percent unique alleles involving 35 or 83.33% loci differentiated among the geographical regions. The mean gene diversity (h) per locus was 0.89. A very low mean coefficient of gene differentiation (GST = 0.08) for geographical regions and a high mean within‐region gene diversity (HS = 0.81) were observed, indicating that most genetic diversity existed within the regions. There was an obvious relationship between genetic distance and geographical distance. The results showed multiple centers of genetic diversity for Chinese wild soybean in North China, the Huanghe River Valley, and Central China as well as the Changjiang River Valley, implicating multiple site origins of soybeans within China.  相似文献   

11.
N. Senthil  T. Komatsuda 《Euphytica》2005,145(1-2):215-220
Brittle rachis of wild barley is controlled by two dominant complementary genes, Btr1 and Btr2, and mutation in either locus (btr1 or btr2) results in the non-brittle rachis of cultivated barley. In this study, a simple monogenic inheritance of non-brittle rachis was demonstrated, and moreover differentiation of multiple dominant alleles for either Btr1 or Btr2 among cultivated and wild barley lines was suggested. Two amplified-fragment-length polymorphism (AFLP) linkage maps of the genes were constructed using wild × btr1-type cultivar and wild × btr2-type cultivar F2 populations. The order of AFLPs and the btr1/btr2 locus was constant between the wild × cultivar maps and a cultivar × cultivar map previously constructed. No suppression of recombination due to the inter-subspecific crosses was noticed in the interval studied. The btr1 locus and all AFLP loci were separated in the wild × btr1-type cultivar F2 map, but the btr2 locus and eight AFLP loci did not recombine in the wild × btr2-type cultivar F2 map, thus slightly different levels of affinity between parental cultivars with the wild line was suggested at the btr1/btr2 locus.  相似文献   

12.
Synthetic hexaploid wheats are of interest to wheat breeding programs, especially for introducing new genes that confer resistance to biotic and abiotic stresses. A group of 54 synthetic hexaploid wheats derived from crosses between emmer wheat(Triticum dicoccum, source of the A and B genomes) and goat grass (Aegilops tauschii, D genome donor) were investigated for genetic diversity. Using the AFLP technique, dendrograms revealed clear grouping according to geographical origin for the T. dicoccum parents but no clear groups for the Ae. tauschii parents. The geographical clustering of the T. dicoccum parents was also reflected in the dendrogram of their derived synthetic hexaploids. Diversity of the T. dicoccum parents and their derived synthetic hexaploids was further evaluated by measuring 18morphological and agronomic traits on the plants. Clustering based on morphological and agronomic data also reflected geographical origin. However, comparison of genetic distances obtained from AFLP and agronomic data showed no correlation between the two diversity measurements. Nevertheless, similarities among major clusters with the two systems could be identified. Based on percentage of polymorphic markers, the synthetic hexaploids had a considerably higher level of AFLP diversity (39%) than normally observed in cultivated hexaploid wheat (12–21%). This suggests that synthetic hexaploid wheats can be used to introduce new genetic diversity into the bread wheat gene pool. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Two diploid accessions of wild oat, CIav6956 and CIav7233, were identified as carrying seedling resistance to oat crown rust (caused by Puccinia coronata f. sp. avenae; Pca). Two vigorous interploidy F1 hybrids were generated from crosses involving the hexaploid oat cultivar Wintaroo and the diploid oat Avena strigosa Schreb. accession CIav6956. An additional interploidy F1 hybrid, designated “F1-Aa1”, was produced from a cross of Wintaroo and the diploid oat accession CIav7233. All three hybrids were more vigorous and taller than the cultivated parent Wintaroo. The three F1 hybrids contained full chromosome complements from both parents (2n = 4x = 28), but no seeds were obtained when the three F1 hybrids were selfed. Meiotic analyses of the hybrids indicated that they exhibited a high degree of inter-genome and intra-genome pairing. Trivalent configurations were detected in 95–96% of meiotic cells and a minimum of three bivalents was present in all cells. An average chiasma frequency of 7.2–7.9 per cell was observed for the three F1 hybrids. A fourth F1 hybrid was subsequently generated from a cross between the diploid oat accession CIav7233 and Wintaroo. One octaploid (2n = 8x = 56) was generated from this hybrid and progeny were resistant to two Pca races. The chromosome number of the octaploid progeny varied between 51 and 54 chromosomes. Development of a chromosome addition line(s) with the crown rust resistance should be possible from these partial-octaploids.  相似文献   

14.
Ten microsatellite markers were used to investigate genetic diversity and genetic structure among 32 accessions of Jatropha curcas. Low levels of average genetic diversity were observed (H E = 0.160). A dendrogram produced by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Nei’s genetic distances revealed 3 groups among 32 accessions. The genetic differentiation (F ST ) among two groups was significant (P < 0.01). The model-based Bayesian clustering method indicated that a population structure (ΔK) was separated into two groups. The analysis of molecular variance (AMOVA) showed higher variability (63.753%) among groups than within groups (36.247%). These findings could assist in defining the best method of genetic conservation and studies in breeding programs for genetic improvement of J. curcas.  相似文献   

15.
Soybean breeders have not exploited the diversity of the 26 wild perennial species of the subgenus Glycine Willd. that are distantly related to soybean [Glycine max (L.) Merr.] and harbour useful genes. The objective of this study was to develop a methodology for introgressing cytoplasmic and genetic diversity from Glycine tomentella PI 441001 (2= 78) into cultivated soybean using ‘Dwight’ (2= 40) as the male parent. Immature seeds (19–21 days post‐pollination) were cultured in vitro to produce F1 plants (2= 59). Amphidiploid (2= 118) plants, induced by colchicine treatment, were vigorous and produced mature pods and seeds after backcrossing with ‘Dwight’. The BC1 plants (2= 79) produced mature seeds in crosses with ‘Dwight’. Chromosome numbers in BC2F1 plants ranged from 2= 41–50. From BC2F2 to BC3F1, the number of plants in parentheses with 2= 40 (275), 2= 41 (208), 2= 42 (80), 2= 43 (27), 2= 44 (12) and 2= 45 (3) were identified. Fertile lines were grown in the field during 2012 and 2013. This is the first report of the successful development of new alloplasmic soybean lines with cytoplasm from G. tomentella.  相似文献   

16.
Interspecific hybridization is an important approach to broaden the genetic base and create novel plant forms in breeding programs. However, interspecific hybridization in Ipomoea is very difficult due to the cross incompatibility. Here we report two novel interspecific F1 hybrids between I. batatas (L.) Lam. (2n = 6x = 90) and two wild species, I. grandifolia (2n = 2x = 30) and I. purpurea (2n = 2x = 30). Hybridization was stimulated by applying plant growth hormones. Morphological, molecular and cytological tests were conducted to confirm their hybridity. We found that the two hybrids were quite distinctive in leaf color and morphology, and yielded intermediate sizes of storage roots compared to their respective parents. Inter-simple sequence repeat analysis showed that the unique DNA bands from the wild parents could be detected in these two hybrids. The cluster analysis also showed that the two F1 hybrids were closer to I. batatas in phylogeny relationship. The number of chromosomes of the two hybrids was both 60, indicating that the hybrids were tetraploid. The meiotic configuration analysis of the H1 of I. batatas × I. grandifolia revealed the occurrence of 17.58I + 14.28II + 1.36III + 2.48IV at metaphase I in average chromosome association per pollen mother cells (PMCs), 4.26I + 18.32II + 2.56III + 3.12IV was average meiotic configuration in the H2 of I. batatas × I. purpurea. Both hybrids appeared to be polyads and multi-microcytes at tetrad phase and differed in their pollen fertility.  相似文献   

17.
Isatis tinctoria L. was cultivated until the 19th century to produce indigo, a natural blue pigment used principally for dyestuffs. The current search for alternative crops and interest in natural products has led to reconsidering I. tinctoria as a crop to be grown in marginal areas to produce natural indigo. To reintroduce I. tinctoria into cultivation, its behaviour under different climatic conditions as well as its morpho-physiological and genetic diversity must be assessed in order to evaluate the possibilities of future breeding work. To do this, a Eurasian collection of 15 accessions was studied in a 2-year experiment. The study was carried out in four locations in order to assess plant performance at altitudes ranging from 380 to 1,700 m a.s.l. A second experiment evaluated the morpho-physiological diversity of several traits (some related to agronomic performances) of the collection. In a third experiment the genetic traits of the collection were characterised by using eight AFLP and eight SAMPL markers. The species showed a wide adaptability to different mountainous conditions and the populations showed high morphologic and genetic variability and differed according to their origins. Both morpho-physiological and molecular characterisation allowed the accessions to be distinguished into groups of European and Asian origin. Future breeding work is recommended because some accessions have good agronomic potential.
Valeria NegriEmail:
  相似文献   

18.
Microsatellite or simple sequence repeat (SSR) markers are valuable tools for many purposes, such as phylogenetic, fingerprinting and molecular breeding studies. However, such marker resources are unavailable in Assam tea (Camellia assamica ssp. assamica; Masters). With an objective to enrich the repertoire of microsatellite markers in traditional tea, 185 novel microsatellite (150 genomic and 35 genic) markers were identified from (GA)n‐enriched genomic libraries and public expressed sequence data in Assam tea. High‐quality 0.412‐Mb non‐redundant (NR) genomic data set derived from nucleotide sequencing of 1297 (GA)n‐enriched genomic positive clones and 2723 unigenes (1.33 Mb) predicted from 10 803 random public expressed sequence tags (ESTs) in C. assamica ssp. assamica were utilized for identification of genomic and genic microsatellite markers, respectively. The average number of alleles and polymorphic information content (PIC) recorded for the newly developed SSR markers were 6.17 and 0.398, respectively. The average observed (Ho) and expected (He) heterozygosity varied from 0.626 to 0.697, respectively. These markers were found to be highly transferable (74.5–100%) to cultivated (C. sinensis, C. assamica ssp. lasiocalyx) and five wild Camellia species. Genetic diversity coefficient detected a high level of divergence in 24 cultivated tea accessions (69.3%). Phylogenetic analysis revealed that major groupings were broadly in accordance with taxonomic classification of tea, and all the wild Camellia species remained as an out‐group. The high polymorphic content coupled with high rate of cross‐transferability demonstrates wider applicability of novel microsatellite markers in genotyping, genetic diversity, genome mapping and evolutionary studies in various Camellia species.  相似文献   

19.
Drought and low soil fertility are considered the most important abiotic stresses limiting maize production in sub-Saharan Africa. Knowledge of the combining ability and diversity of inbred lines with tolerance to the two stresses and for those used as testers would be beneficial in setting breeding strategies for stress and nonstress environments. We used 15 tropical maize inbred lines to (i) evaluate the combining ability for grain yield (GY), (ii) assess the genetic diversity of this set of inbred lines using RFLP, SSR, and AFLP markers, (iii) estimate heterosis and assess the relationship between F1 hybrid performance, genetic diversity and heterosis, and (iv) assess genotype × environment interaction of inbred lines and their hybrids. The F1 diallel hybrids and parental inbreds were evaluated under drought stress, low N stress, and well-watered conditions at six locations in three countries. General combining ability (GCA) effects were highly significant (P < 0.01) for GY across stresses and well-watered environments. Inbred lines CML258, CML339, CML341, and CML343 had the best GCA effects for GY across environments. Additive genetic effects were more important for GY under drought stress and well-watered conditions but not under low N stress, suggesting different gene action in control of GY. Clustering based on genetic distance (GD) calculated using combined marker data grouped lines according to pedigree. Positive correlation was found between midparent heterosis (MPH) and specific combining ability (SCA), GD and GY. Hybrid breeding program targeting stress environments would benefit from the accumulation of favorable alleles for drought tolerance in both parental lines.  相似文献   

20.
In this study, we developed a total of 37 simple sequence repeat (SSR) markers from 11 bacterial artificial chromosome (BAC) clone sequences anchored on chromosome 12 of tomato available at Solanaceae Genomics Network. These SSR markers could group a set of 16 tomato genotypes comprising of Solanum lycopersicum, S. pimpinellifolium, S. habrochaites, and S. pennellii unambiguously according to their known species status. Clear subgroups of genotypes within S. lycopersicum were also observed. A subset of 16 SSR markers representing the 11 BAC clones was used for developing genetic linkage maps of three interspecific F2 populations produced from the crosses involving a common S. lycopersicum parent (CLN2498E) with S. pennellii (LA1940), S. habrochaites (LA407) and S. pimpinellifolium (LA1579). The length of the genetic linkage maps were 112.5 cM, 109.3 cM and 114.1 cM, respectively. Finally, an integrated genetic linkage map spanning a total length of 118.7 cM was developed. The reported SSR markers are uniformly distributed on chromosome 12 and would be useful for genetic diversity and mapping studies in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号