首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate methods, including principal component, cluster and discriminant analyses, were used to assess the patterns of morphological variation and to group 415 sorghum accessions for 15 quantitative characters. The first five principal components explained 79% of the total variation with plant height and days to 50% flowering being the most important characters in the first principal component. Cluster analysis grouped the accessions into ten clusters. A greater proportion of accessions of similar adaptation zones and accessions from regions of origin with similar agro-climatic conditions were grouped together. Moreover, discrimination of accessions was more pronounced when discriminant analysis was based on zone of adaptation rather than regions of origin. Based on the observed patterns of variation, it is concluded that the morphological variation in the material studied is structured by environmental factors. The implications of the results for plant breeding and germplasm conservation programmes arediscussed.  相似文献   

2.
Genetic and phenotypic diversity among randomly selected 36 downy-mildew-resistant sorghum accessions were assessed, the former using 10 simple sequence repeat (SSR) marker loci and the latter using 20 phenotypic traits. The number of alleles (a j ) at individual loci varied from five to 14 with an average of 8.8 alleles per locus. Nei's gene diversity (H j ) varied from 0.59 to 0.92 with an average of 0.81 per locus. High gene diversity and allelic richness were observed in races durra caudatum (H j = 0.76, a j = 4.3) and guinea caudatum (H j = 0.76, a j = 3.8) and in east Africa (H j = 0.78, a j = 7.2). The regions were genetically more differentiated than the races as indicated by Wright's F st. The pattern of SSR-based clustering of accessions was more in accordance with their geographic proximity than with their racial likeness. This clustering pattern matched little with that obtained from phenotypic traits. The inter-accession genetic distance varied from 0.30 to 1.00 with an average of 0.78. Inter-accession phenotypic distance varied from 0.01 to 0.55 with an average of 0.33. Eleven accession-pairs had phenotypic distance of more than 0.50 and genetic distance of more than 0.70. These could be used as potential parents in a sorghum downy mildew resistance-breeding program.  相似文献   

3.
Changes in the diversity of landraces in centres of diversity of cultivated plants need to be assessed in order to monitor and conserve agrobioversity—a key-element of sustainable agriculture. This notably applies in tropical areas where factors such as increased populations, climate change and shifts in cropping systems are hypothesized to cause varietal erosion. To assess varietal erosion of staple crops in a country subjected to various anthropogenic and natural environmental changes, we carried out a study based on a comparison of the diversity of pearl millet and sorghum varieties collected in 79 villages spanning the entire cereal-growing zone of Niger over a 26 year period (1976–2003). For these two crops, the number, name and type of varieties according to important traits for farmers were considered at different spatial scales (country, region, village) at the two collection dates. The results confirmed the high diversity of millet and sorghum varieties in Niger. No erosion of varietal diversity was noted on a national scale during the period covered. Some changes were observed but were limited to the geographical distribution of certain varieties. This highlights that farmers’ management can preserve the diversity of millet and sorghum varieties in Niger despite recurrent and severe drought periods and major social changes. It also indicates that rainfed cereal cropping systems in Niger should remain to be based on millet and sorghum, while reinforcing farmers’ seed systems.  相似文献   

4.
Genetic variation within and among several Sorghum populations from different agroecological zones in Malawi were investigated using random amplified polymorphic markers (RAPDs). DNA samples from individual plants were analyzed using 35 oligonucleotides of random sequence. Twenty five of these primers allowed amplifications of random polymorphic (RAPD) loci. Overall, 52% of the scored loci were polymorphic. Every accession was genetically distinct. The analysis of molecular variance revealed that the within-region (among accessions) variations accounted for 96.43% of the total molecular variance. Observed variations in allelic frequency was not related to agroecological differences. The degree of band sharing was used to evaluate genetic distance between accessions and to construct a phylogenetic tree. Further analysis revealed that the sorghum accessions analyzed were genetically close despite considerable phenotypic diversity within and among them. It is suggested that all the sorghum landraces currently available in Malawi should be conserved both ex situ and in situ to maintain the current level of genetic diversity.  相似文献   

5.
The extent and patterns of distribution of genetic variation among 80 sorghum (Sorghum bicolor (L.) Moench) germplasm accessions from Ethiopia and Eritrea were investigated using RAPD with 20 oligonucleotide primers. The primers generated a total of 147 polymorphic bands across the 80 accessions with a mean of 7.35 bands per primer. Estimation of the extent of variation by the Shannon-Weaver diversity index revealed an intermediate level of overall variation (H = 53), although the levels varied among regions of origin of the accessions. Partitioning of the total variation revealed considerable variation (77%) within the region of origin of the accessions and the remainder (23%) among regions of origin. Similarly, a large portion (94%) of the total variation was found within the adaptation zones compared to among the adaptation zones (6%). The results suggest a weak differentiation of the sorghum material both on regional and agro-ecological bases, which could be ascribed to the high rate of outcrossing in cultivated sorghum and its free natural hybridization with its wild and weedy relatives, as well as to seed movement by humans. The average genetic dissimilarity was found to be 36% among the 80 accessions and 13% among the 15 regions of origin. Cluster analysis failed to group accessions of the same region or the same adaptation zone, which further confirmed the weak differentiation of the material studied. The clustering pattern of the regions of origin was broadly concordant with previous clustering patterns obtained using morphological characters, in which regions with broad agro-climatic conditions were grouped together.  相似文献   

6.
7.
Ethiopia is a centre of diversity and hosts rich genetic resources of tetraploid wheats. Through time, the wheat materials were subject to genetic erosion. Closer investigation was made to assess the status of loss, and identify the possible causes by studying two districts from East Shewa. Information from primary and secondary sources was reviewed and analysed. Farmers identified 26 tetraploid wheat landraces (21 from Akaki and 17 from Ejere), which were once widely grown in the area. Of these, only six were currently available. Compared to the formerly available number of landraces, the loss of diversity in the study area was estimated to be 77%. In the Ejere locality, the loss was 100% before the launching of the on farm landrace conservation programme, and for Akaki it was 95%. Major factors that contributed to the loss include: (1) introduction and expansion of bread wheat varieties; (2) expansion of tef; (3) lack of a mechanism to re-supply seeds of tetraploid wheat landraces; (4) decline in size of landholdings; (5) changes in land use and cropping patterns; (6) lack of policy support; and (7) expansion of improved tetraploid wheat varieties. The lessons from this study underscore the importance of strengthening the local seed supply system as a prerequisite for sustaining on farm conservation of landraces. Moreover, it is necessary to initiate diversity studies focusing on the distribution and status of tetraploid wheat landraces across the country. Complementing these by molecular analyses is essential in order to assess the genetic distinctness of the landraces.  相似文献   

8.
9.
The effects of aluminum on the uptake and translocation of N in two hybrid cultivars of sorghum with differential tolerance to aluminum were studied.

Aluminum decreased the amount of N accumulated and the % of N in the aerial parts of the plants. In the roots the amount of N accumulated also decreased but the % of N increased, in both cultivars. Besides an effect on dry matter yield, Al probably reduces the uptake of N and its translocation to the aerial parts of the plant. Apparently, this impairment on N translocation resulted from Al effects on the root pressure.

Aluminum not only reduced the amount of N translocated but also changed the sap composition. The % of NO3 ‐N decreased while the % of amino acid‐N increased suggesting an Al effect on N uptake and also on protein degradation. Asparagine and glutamine contributed about 80% of the free amino acid fraction; however, their proportions changed in presence of Al. Therefore, Al also interfered with the synthesis and/or interconversion of these amino acids.  相似文献   


10.
ABSTRACT

The accident at Fukushima 1 Nuclear Power Plant in 2011 caused contamination by radioactive cesium (134Cs and 137Cs) in surrounding areas. After this accident, concerns about Cs contamination, including food safety, have limited industrial activities and reconstruction in Fukushima. Sorghum (Sorghum bicolor (L.) Moench) is an annual C4 crop that can be used as biofuel feedstock due to its high biomass. Use of Cs-contaminated fields to produce biofuel feedstock would be more acceptable than use for food or feed crops due to the lower risk of human internal exposure to radioactive Cs. In addition, high-biomass sorghum might be suitable for removal of Cs from fields (phytoremediation). For both applications, it is important to use accessions showing the appropriate level of accumulation of radioactive Cs (low for biofuel feedstock, high for phytoremediation). Here, we examined the accumulation of radioactive Cs in the aerial parts of 56 sorghum accessions grown in Fukushima. Accessions were cultivated in a low-level-contaminated field in 2011 and in a highly contaminated field in a planned evacuation zone in 2012. After cultivation, activity concentrations from 134Cs and 137Cs were measured in the aerial plant parts. In 2011, the activity concentrations of 134Cs and 137Cs were 58.2–350 and 58.6–450 Bq kg?1 dry weight, respectively. In 2012, the concentrations of 134Cs and 137Cs were 54.2–1320 and 57.1–1960 Bq kg?1 dry weight, respectively. Relative to the median values of the accessions grown each year, 3 showed lower activity concentrations and 2 showed higher activity concentrations of radioactive Cs under both cultivation conditions. In contrast to a previous report, there was no significant correlation between biomass and Cs activity concentration. Because both biomass and Cs concentration are important in classifying accessions for use in phytoremediation, we also calculated the Cs accumulation index (single-plant biomass × Cs activity concentration) for each accession. The accession AKLMOI WHITE showed the highest values in both years, suggesting that this accession has the high per-plant accumulation capacity for radioactive Cs. Our data collected from actual contaminated fields is irreplaceable for choosing sorghum accessions for cultivation in Cs-polluted sites such as Fukushima.  相似文献   

11.
Genetic diversity in forest coffee (Coffea arabica L.) was estimated using inverse sequence-tagged repeat (ISTR) markers. One hundred ninety two samples representing 16 populations of C. arabica from four regions of Ethiopia were analyzed with 12 pairs of forward and backward ISTR primer combinations. A total of 144 reproducible bands were generated out of which 37 (25%) were polymorphic and scored as present (1) or absent (0) data matrix. This data was used to compute Jaccard coefficient to estimate genetic variability among all possible pairs of samples. The proportion of polymorphic bands within populations ranged from 19% for Bale-3, to 54% for Walega-2 populations. Un-weighted pair group method with arithmetic mean (UPGMA) based cluster analysis generated two clusters at 56% similarity value. The samples were clustered on the basis of their geographical origin, which could be attributed to a few region specific banding patterns detected. However, within regions most of the samples failed to cluster on the basis of their respective populations, which may be due to the presence of substantial gene flow between local populations in the form of seedlings carried out by farmers. The results may provide information to develop strategies for in situ conservation.  相似文献   

12.
Niu  Hao  Han  Yuanhuai  Ping  Junai  Wang  Yubin  Lv  Xin  Chu  Jianqiang 《Genetic Resources and Crop Evolution》2022,69(5):1941-1951
Genetic Resources and Crop Evolution - Forage sorghum (Sorghum bicolor (L.) Moench) is a C4 cereal crop with excellent quality, which is widely cultivated in many countries and regions. Acid...  相似文献   

13.
Field experiments were conducted to compare the effects of allelopathic sorghum cultivars ‘Enkath’ and ‘Rabeh’ at three planting densities (6.6, 13.3 and 26.6 plant m?2) on weed growth and sorghum yields in 2009 and 2010. Sorghum planting densities suppressed average weed population by 26–42% and average weed biomass by 46–57% compared with weedy check in 2009. A similar trend in the reduction in weed population and weed biomass was observed in 2010. Planting densities at 6.6, 13.3 and 26.6 plant m?2 significantly suppressed average weed population by 26, 31 and 42% and average weed biomass by 88, 91 and 96% compared with weedy check, respectively, during 2009. A similar trend in effect was also recorded during 2010. Enkath cultivar reduced average weed density and dry biomass by 25 and 44% during 2009 and by 23 and 30% in 2010 compared with Rabeh cultivar. Root exudates of Enkath inhibited more weed growth than Rabeh. Increased planting density significantly increased average grain yield of sorghum. The highest grain yield of sorghum (12.68 t ha?1) was recorded in plots in which the planting density was 26.6 plant m?2.  相似文献   

14.
Thirty‐four tetraploid (2n = 4x = 28) wheat (Triticum turgidum L.) landrace populations collected from four regions in Ethiopia, and consisting of 4099 entries were characterized for glume colour, glume pubescence, beak awn, seed colour and spike density. The main objective was to analyse the diversity and distribution of these traits on the basis of administrative regions and altitudinal gradients. The Shannon‐Weaver Diversity Index (H') was used to estimate the magnitude of diversity. With the exception of spike density, all characters were polymorphic in all regions and most altitude groups. However, clinal patterns were observed in only a few cases. At the population level, the mean H’ varied from completely monomorphic (H’ = 0.00) to highly polymorphic (H’ = 0.80 ± 0.07). The highest diversity was found in regions with relatively better climatic conditions and in optimal altitude ranges. On country basis, seed colour (H’ = 0.98) and spike density (H’ = 0.43) displayed the highest and the lowest diversity indices, respectively. Spike density was the only character that exhibited significant differences (P<0.01) both “between regions”; and “between altitude groups”;. Across characters, most of the variance was due to the lowest hierarchy, the “within‐population”; component. The “between region”; and “between altitude group”; variances were significant, but spike density alone was responsible for the differences. The overall mean H’ for Ethiopia was 0.77 + 0.09 and did not seem to have reduced appreciably within the past 25 years or so, when compared to previous estimates.  相似文献   

15.
Genetic diversity was investigated in 348 accessions and subaccessions of grasspea (Lathyrus sativus L.) from 10 geographical regions. Polymorphism for 20 isozymes of 13 enzyme systems was studied to estimate the genetic diversity. The Near East and North Africa regions included the most variability for these isozyme systems, suggesting that the center of diversity (center of origin) for grasspea is in this general area. The lowest variability was found in accessions and subaccessions from South America, followed by those from Sudan–Ethiopia. Diversity was measured for individual loci over regions and EST-1 and SKDH had the highest genetic diversity. The closest genetic diversity was observed for LAP-2, followed by AAT-1 and PGM. The closest genetic distance existed between populations from the Near East and North Africa. Populations from South Asia and Sudan–Ethiopia, though geographically widely separated, exhibited a closer genetic distance from each other than from other regions.  相似文献   

16.
Maize (Zea mays L.) and sorghum (Sorghum bicolor L.) Moench (local variety called Masakwat) plants were grown in a sterilized low-P soil in the greenhouse for 12 weeks. Each plant species was either mycorrhizal with vesicular-arbuscular mycorrhizal (VAM) fungi, non-mycorrhizal but minimally fertilized with soluble P, or non-mycorrhizal but highly fertilized with soluble P. Drought stress was imposed after 4 weeks at weekly intervals. Under unstressed conditions, leaf area, shoot dry weights, xylem pressure, and soil water potentials were similar for VAM and the two non-mycorrhizal P-fertilized treatments but each of the VAM-infected species had a greater total root length. Total P uptake was similar for the maize treatments but higher for VAM than non-mycorrhizal P-fertilized sorghum treatments. Under drought-stressed conditions, the growth parameters and soil water potential were similar for all maize treatments but they were reduced by mycorrhizal inoculation in sorghum. Greater water extraction occurred in drought-stressed mycorrhizal sorghum. In both plant species, total P uptake and P uptake per unit root length (including unstressed species) were significantly enhanced in non-mycorrhizal P-fertilized treatments compared with the mycorrhizal treatment. Except for the root dry weight of sorghum plants, there were no differences in the growth parameters and P uptake between minimally and highly P-fertilized non-mycorrhizal treatments for either maize or sorghum. The increased total root length in drought-stressed mycorrhizal sorghum plants and the similar infected root lengths in unstressed and drought-stressed sorghum plants may have caused high C partitioning to drought-stressed mycorrhizal roots and therefore caused the reduced growth parameters in mycorrhizal plants compared to the non-mycorrhizal P-fertilized counterparts. The results indicate that P fertilization in addition to mycorrhizal inoculation may improve the drought tolerance of maize and sorghum plants.  相似文献   

17.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

18.
Genetic diversity in the Lima bean (P. lunatus L.) was assessed bymeans of two chloroplast DNA probes. Based on data obtained from 152accessions including wild forms and landraces, the two separateMesoamerican and Andean groups were confirmed and a transition poolof genetic diversity was observed in the two botanical formsconsistent with their distribution range. Three primary centres ofgenetic diversity and one secondary diversification spot are proposedfor the wild Lima bean whereas only two domestication sites areunderlined for the landraces. The importance of human intervention inwidening the distribution range and the genetic diversity inlandraces is discussed.  相似文献   

19.
A field experiment was conducted to evaluate nine genotypes of sorghum grown for two consecutive cropping seasons in 2006 and 2007 under rain-fed conditions in a semiarid zone at the Research Farm of El Fasher Research Station, Sudan. The objective of the study was to assess genetic variability and heritability among sorghum genotypes using phenotypic morphological traits. A randomized complete block design with four replications was used for the experiment. The grain yield (kg ha?1), the number of heads/plant, followed by straw yield (kg ha?1) had the highest genotypic coefficients of variation in both seasons. High heritability (above 95%) was shown for plant height in both seasons. High genetic advance was reported in straw yield, 1000-grain weight and days to flowering in both seasons. Highly significant differences among genotypes were found for all characters. The high-yielding genotype was Adv-Edo-CWS (E-9) with grain yields of 2780.6 kg ha?1. Grain yield was significantly and positively correlated with straw yield (r = 0.91), number of heads/plant (r = 0.69), plant height (r = 0.53) and 1000-grain weight (r = 0.36). However, it was significantly and negatively correlated with days to 50% flowering (r = ?0.21). Based on their positive association with grain yield, the character’s straw weight, number of heads/plant, plant height and 1000-grain weight would be the preferable selection criteria for sorghum improvement program in the country.  相似文献   

20.
 The effects of applying either inorganic fertilizer or leaf mulch of Acacia saligna (Labill.) H.L. Wend. on yields of Sorghum bicolor (L.) were compared with an unfertilized control under the high leaching conditions of runoff irrigation in a dry tropical environment. The N use efficiency and transfer from 15N-labelled (NH4)2SO4 or acacia leaves to the sorghum differed in quantity and quality. Only 6% of the applied mulch N was retrieved in the crop, in contrast to 21% of the fertilizer N. The proportions of N in the crop derived from the fertilizers were small, amounting to 7% and 28%, respectively, in the mineral fertilizer and mulch treatments. However, the application of inorganic fertilizer and mulch significantly increased crop grain yield (P<0.05 and P<0.1, respectively), biomass production and foliar N contents (P<0.05). The inorganic fertilizer improved crop yields to a larger extent than mulching. At the same time, more N was lost by applying (NH4)2 SO4 than leaf mulch: only 37% of the N of applied (NH4)2 SO4 was found in the crop and the soil (0–0.3 m), but 99% of the mulched N. High NO3 contents in the topsoil of the inorganic fertilized sorghum treatments indicated the risk of N leaching. However, more important may have been gaseous N losses of surface-applied NH4 +. From a nutrient conservation point of view, mulches should be given preferance to inorganic fertilizers under high soil pH and leaching conditions, but larger improvements of crop yields could be achieved with mineral fertilizers. Received: 29 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号