首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objectives of this study were to investigate the diversity of Escherichia coli O157:H7 isolates obtained over a 3-month period from a cattle feedlot in order to assess the relationship between environmental and faecal isolates and to determine the pattern of transmission of E. coli O157:H7 between groups of cattle. Faecal samples were obtained from cattle housed in four adjacent feedlot pens at monthly intervals, with environmental pen samples collected simultaneously. All E. coli O157:H7 isolates obtained were examined by pulsed field gel electrophoresis (PFGE), polymerase chain reaction (PCR) to detect eaeA, ehxA, stx1 and stx2 genes and antibiotic sensitivity profiling. Ten isolates were subjected to acid shock to imitate conditions in the acidic cattle abomasum and assess the effect on PFGE profiles. E. coli O157:H7 was isolated from 69 faecal samples and 26 environmental samples. All isolates (n=95) carried the genes for eaeA, ehxA and stx2 and were sensitive to all antibiotics tested. The PFGE profiles of all isolates differed by no more than two bands and clustered within 80% similarity following dendrogram analysis. Acid shock had no effect on the subsequent PFGE patterns. A total of 8.7% (6/69) of cattle were shedding E. coli O157:H7 in the first month with faecal shedding increasing to 52% (36/69) by the third month of the study. A single isolate of E. coli O157:H7 may be passed rapidly through cattle pens, with the environment acting as a significant reservoir for transmission. PFGE is a useful tool for tracking the direct and indirect transmission of E. coli O157:H7 isolates on the farm.  相似文献   

2.
Over a 12 month period, 588 cattle faecal samples and 147 farm environmental samples from three dairy farms in southeast Queensland were examined for the presence of Shiga-toxigenic Escherichia coli (STEC). Samples were screened for Shiga toxin gene (stx) using PCR. Samples positive for stx were filtered onto hydrophobic grid membrane filters and STEC identified and isolated using colony hybridisation with a stx-specific DNA probe. Serotyping was performed to identify serogroups commonly associated with human infection or enterohaemorrhagic Escherichia coli (EHEC). Shiga-toxigenic Escherichia coli were isolated from 16.7% of cattle faecal samples and 4.1% of environmental samples. Of cattle STEC isolates, 10.2% serotyped as E. coli O26:H11 and 11.2% serotyped as E. coli O157:H7, and the E. coli O26:H11 and E. coli O157:H7 prevalences in the cattle samples were 1.7 and 1.9%, respectively. Prevalences for STEC and EHEC in dairy cattle faeces were similar to those derived in surveys within the northern and southern hemispheres. Calves at weaning were identified as the cattle group most likely to be shedding STEC, E. coli O26 or E. coli O157. In concurrence with previous studies, it appears that cattle, and in particular 1-14-week-old weanling calves, are the primary reservoir for STEC and EHEC on the dairy farm.  相似文献   

3.
OBJECTIVE: To describe the frequency and distribution of Escherichia coli O157:H7 in the feces and environment of cow-calf herds housed on pasture. SAMPLE POPULATION: Fecal and water samples for 10 cow-calf farms in Kansas. PROCEDURE: Fecal and water samples were obtained monthly throughout a 1-year period (3,152 fecal samples from 2,058 cattle; 199 water samples). Escherichia coli O157:H7 in fecal and water samples was determined, using microbial culture. RESULTS: Escherichia coli O157:H7 was detected in 40 of 3,152 (1.3%) fecal samples, and 40 of 2,058 (1.9%) cattle had > or = 1 sample with E coli. Fecal shedding by specific cattle was transient; none of the cattle had E coli in more than 1 sample. Significant differences were not detected in overall prevalence among farms. However, significant differences were detected in prevalence among sample collection dates. Escherichia coli O157:H7 was detected in 3 of 199 (1.5%) water samples. CONCLUSIONS AND CLINICAL RELEVANCE: Implementing control strategies for E coli O157:H7 at all levels of the cattle industry will decrease the risk of this organism entering the human food chain. Devising effective on-farm strategies to control E coli O157:H7 in cow-calf herds will require an understanding of the epidemiologic characteristics of this pathogen.  相似文献   

4.
Fecal samples collected from cattle at processing during a 1-year period were tested for verotoxins (VT1, VT2), Escherichia coli O157:H7, and Salmonella. Verotoxins were detected in 42.6% (95% CI, 39.8% to 45.4%), E. coli O157:H7 in 7.5% (95% CI, 6.1% to 9.1%), and Salmonella in 0.08% (95% CI, 0.004% to 0.5%) of the fecal samples. In yearling cattle, the median within-lot prevalence (percentage of positive samples within a lot) was 40% (range, 0% to 100%) for verotoxins and 0% for E. coli O157:H7 (range, 0% to 100%) and Salmonella (range, 0% to 17%). One or more fecal samples were positive for verotoxins in 80.4% (95% CI, 72.8% to 86.4%) of the lots of yearling cattle, whereas E. coli O157:H7 were detected in 33.6% (95% CI, 26.0% to 42.0%) of the lots. In cull cows, the median within-lot prevalence was 50% (range, 0% to 100%) for verotoxins and 0% (range, 0% to 100%) for E. coli O157:H7 and Salmonella (range, 0% to 0%). Verotoxins were detected in one or more fecal samples from 78.0% (95% CI, 70.4% to 84.2%) of the lots of cull cows, whereas E. coli O157:H7 were detected in only 6.0% (95% CI, 3.0% to 11.4%) of the lots of cull cows. The prevalence of verotoxins in fecal samples was lower in yearling cattle than in cull cows, whereas the prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle than in cull cows. The prevalence of E. coli O157:H7 in fecal samples was highest in the summer months. Rumen fill, body condition score, sex, type of cattle (dairy, beef), and distance travelled to the plant were not associated with the fecal prevalence of verotoxins or E. coli O157:H7. The prevalence of verotoxins in fecal samples of cull cows was associated with the source of the cattle. It was highest in cows from the auction market (52%) and farm/ranch (47%) and lowest in cows from the feedlot (31%). In rumen samples, the prevalence of verotoxins was 6.4% (95% CI, 4.2% to 9.4%), and it was 0.8% (95% CI, 0.2% to 2.3%) for E. coli O157:H7, and 0.3% (95% CI, 0.007% to 1.5%) for Salmonella.  相似文献   

5.
Feed has been reported as a vehicle for transmission of Salmonella enterica in cattle and several lines of evidence suggest that feed can be a vehicle for transmitting Escherichia coli O157:H7 as well. To show whether microbial contamination of feeds could contribute to the populations of S. enterica and E. coli O157:H7 on a farm, we compared isolates from feed samples to bovine fecal isolates from the same farm using pulsed-field gel electrophoresis (PFGE). Four of 2365 component feed samples (0.2%) and 1 of 226 feed mill samples (0.4%) were positive for E. coli O157:H7. Twenty of 2405 (0.8%) component feed samples and none of 226 feed mill samples were positive for Salmonella. PFGE profiles from E. coli O157:H7 isolated from a component feed sample closely resembled that from a fecal isolate collected later from the same farm, and a similar observation was made of a Salmonella Tyhpimurium isolate from component feed on another farm. There were indistinguishable PFGE profiles from component feed Salmonella Tyhpimurium DT104 isolates and fecal isolates from the same farm. These results provide evidence for a role of cattle feed in transmission of E. coli O157:H7; S. enterica; cattle-bacteria.  相似文献   

6.
Some Shiga toxin-producing Escherichia coli strains (STEC), and in particular E. coli O157:H7, are known to cause severe illness in humans. STEC have been responsible for large foodborne outbreaks and some of these have been linked to dairy products. The aim of the present study was to determine the dissemination and persistence of STEC on 13 dairy farms in France, which were selected out of 151 randomized dairy farms. A total of 1309 samples were collected, including 415 faecal samples from cattle and 894 samples from the farm environment. Bacteria from samples were cultured and screened for Shiga toxin (stx) genes by polymerase chain reaction (PCR). STEC isolates were recovered from stx-positive samples after colony blotting, and characterized for their virulence genes, serotypes and XbaI digestion patterns of total DNA separated by pulsed-field gel electrophoresis (PFGE). Stx genes were detected in 145 faecal samples (35%) and 179 (20%) environmental samples, and a total of 118 STEC isolates were recovered. Forty-six percent of the STEC isolates were positive for stx1, 86% for stx2, 29% for intimin (eae-gene) and 92% for enterohemolysin (ehx), of which 16% of the STEC strains carried these four virulence factors in combination. Furthermore, we found that some faecal STEC strains belonged to serotypes involved in human disease (O26:H11 and O157:H7). PFGE profiles indicated genetic diversity of the STEC strains and some of these persisted in the farm environment for up to 12 months. A large range of contaminated samples were collected, in particular from udders and teats. These organs are potential sources for contamination and re-contamination of dairy cattle and constitute an important risk for milk contamination.  相似文献   

7.
A study was conducted in 2 feedlots in southern Alberta to identify environmental sources and management factors associated with the prevalence and transmission of Escherichia coli O157:H7. Escherichia coli O157:H7 was isolated in preslaughter pens of cattle from feces (0.8%), feedbunks (1.7%), water troughs (12%), and incoming water supplies (4.5%), but not from fresh total mixed rations. Fresh total mixed rations did not support the growth of E. coli O157:H7 and E. coli from bovine feces following experimental inoculation. Within a feedlot, the feces, water troughs, and feedbunks shared a few indistinguishable subtypes of E. coli O157:H7. A few subtypes were repeatedly isolated in the same feedlot, and the 2 feedlots shared a few indistinguishable subtypes. The prevalence of E. coli O157:H7 in water troughs of preslaughter cattle in 1 feedlot was associated with season, maximum climatic temperatures the week before sampling; total precipitation the week before sampling, and coliform and E. coli counts in the water trough.  相似文献   

8.
In order to evaluate the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains, 197 fecal samples of healthy cattle from 10 dairy farms, four beef farms and one slaughterhouse at Rio de Janeiro State, Brazil, were examined for Shiga toxin (Stx) gene sequences by polymerase chain reaction (PCR). For presumptive isolation of O157:H7 E. coli, the Cefixime-potassium tellurite-sorbitol MacConkey Agar (CT-SMAC) was used. A high occurrence (71%) of Stx was detected, and was more frequently found among dairy cattle (82% vs. 53% in beef cattle), in which no differences were observed regarding the age of the animals. Dot blot hybridization with stx1 and stx2 probes revealed that the predominant STEC type was one that had the genes for both stx1 and stx2 in dairy cattle and one that had only the stx1 gene for beef cattle. Three (1.5%) O157:H7 E. coli strains were isolated from one beef and two dairy animals by the use of CT-SMAC. To our knowledge, this is the first report of O157:H7 isolation in Brazil. A PCR-based STEC detection protocol led to the isolation of STEC in 12 of 16 randomly selected PCR-positive stool samples. A total of 15 STEC strains belonging to 11 serotypes were isolated, and most of them (60%) had both stx1 and stx2 gene sequences. Cytotoxicity assays with HeLa and Vero cells revealed that all strains except two of serotype O157:H7 expressed Stx. The data point to the high prevalence of STEC in our environment and suggest the need for good control strategies for the prevention of contamination of animal products.  相似文献   

9.
This study was aimed to understand the relationship of virulence gene distribution and genetic evolution between cattle originated Shiga toxin-producing Escherichia coli (STEC) and human originated enterohaemorrhagic Escherichia coli (EHEC) O157. This experiment collected 18 strains STEC in a dairy farm from Jiangsu province and 9 STEC reference strains (human, sheep, swine and avian), according to the method of U.S. Centers for Disease Prevention and Control Center (PulseNet), using the XbaⅠ enzyme digestion and pulsed field gel electrophoresis (PFGE) analysis, virulence genes were detected in some STEC isolates. The virulence gene distribution of O157 from different origin was remarkably different. The cattle originated STEC O157 and the human originated EHEC O157:H7 (EDL933W) had the most similar virulence gene distribution. In contrast, virulence genes were lack in cattle STEC O18 and O26, even though the cattle STEC O18 and O26 had the similar genotype as human EHEC O157:H7 (EDL933W). PFGE of Xba Ⅰ digested chromosomal DNA from 27 isolates of STEC exhibited 22 profiles. In general,the Dice coefficients of different originated STEC ranged from 72% to 100%.Cattle STEC O157 had a high similarity with two strains of human originated EHEC O157, while a low similarity was demonstrated between cattle STEC O157 and STEC O157 of swine and avian. The Dice coefficients of the cattle STEC O157 and the two strains of human EHEC O157 ranged from 83% to 95%. The Dice coefficients of cattle STEC O26 (Ⅶ,Ⅷ) and the two strains of human EHEC O157 were more than 82%. Therefore, it was concluded that the cattle STEC O157 and human EHEC O157 had a closer relationship in terms of virulence gene distribution and in genetic evolution.  相似文献   

10.
为了探讨牛源产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)分离株在毒力基因分布和遗传进化方面与人源EHEC O157菌株之间的关系,本试验选择收集来自江苏某奶牛场的STEC菌株18株以及人源、羊源、猪源、禽源STEC参考菌株9株,参照美国疾病预防控制中心PulseNet推荐的方法,运用XbaⅠ酶进行酶切并完成脉冲肠凝胶电泳(PFGE)分型和聚类分析;同时对部分STEC菌株进行毒力基因检测。结果表明,经毒力基因检测,不同来源的O157菌株毒力基因分布不尽相同,其中牛源STEC O157与参考株EHEC O157∶H7(EDL933W)的基因排谱最为相近;牛源STEC O18和O26的基因排谱与参考株EHEC O157∶H7(EDL933W)类似,但存在部分基因的缺失。对27株不同来源的STEC分离株进行PFGE,产生了22种不同的酶切图谱。总体来看,不同来源的STEC Dice相似性系数在72%~100%之间。牛源O157分离株与猪源及禽源O157菌株的相似度偏低,而与两株人源O157分离株的相似度偏高,Dice相似性系数在83%~95%之间,牛源O26(克隆群Ⅶ、Ⅷ)与人源O157的相似性系数 > 82%。显然,从牛群中分离到的部分STEC菌株与人源EHEC O157具有较近的遗传进化关系。  相似文献   

11.
A strain of Escherichia coli O157:H7 was isolated from goat faeces during a surveillance study on the prevalence of this serotype of E. coli in farm animals in Greece. Three hundred and fifty one faecal samples were collected from goat, sheep and cattle breeding farms in the area of Epirus, Northwestern Greece. The E. coli O157:H7 isolate was nonsorbitol-fermenter, produced only VT2 and showed a beta-glucuronidase positive activity, a rather unusual biochemical feature for the E. coli O157:H7 serotype. No other strain of E. coli O157:H7 was isolated from the faecal samples of the rest farm animals examined, thus the overall prevalence of animal carriage was found to be 0.2%. The findings also indicate that goats can be a reservoir of E. coli O157:H7 and goat milk, dairy products and meat may serve as a vehicle for the pathogen transmission to humans.  相似文献   

12.
Cattle are a natural reservoir for Shiga toxigenic Escherichia coli (STEC), however, no data are available on the prevalence and their possible association with organic or conventional farming practices. We have therefore studied the prevalence of STEC and specifically O157:H7 in Swiss dairy cattle by collecting faeces from approximately 500 cows from 60 farms with organic production (OP) and 60 farms with integrated (conventional) production (IP). IP farms were matched to OP farms and were comparable in terms of community, agricultural zone, and number of cows per farm. E. coli were grown overnight in an enrichment medium, followed by DNA isolation and PCR analysis using specific TaqMan assays. STEC were detected in all farms and O157:H7 were present in 25% of OP farms and 17% of IP farms. STEC were detected in 58% and O157:H7 were evidenced in 4.6% of individual faeces. Multivariate statistical analyses of over 250 parameters revealed several risk-factors for the presence of STEC and O157:H7. Risk-factors were mainly related to the potential of cross-contamination of feeds and cross-infection of cows, and age of the animals. In general, no significant differences between the two farm types concerning prevalence or risk for carrying STEC or O157:H7 were observed. Because the incidence of human disease caused by STEC in Switzerland is low, the risk that people to get infected appears to be small despite a relatively high prevalence in cattle. Nevertheless, control and prevention practices are indicated to avoid contamination of animal products.  相似文献   

13.
A feedlot trial was conducted to assess the efficacy of an Escherichia coli O157:H7 vaccine in reducing fecal shedding of E. coli O157:H7 in 218 pens of feedlot cattle in 9 feedlots in Alberta and Saskatchewan. Pens of cattle were vaccinated once at arrival processing and again at reimplanting with either the E. coli O157:H7 vaccine or a placebo. The E. coli O157:H7 vaccine included 50 microg of type III secreted proteins. Fecal samples were collected from 30 fresh manure patties within each feedlot pen at arrival processing, revaccination at reimplanting, and within 2 wk of slaughter. The mean pen prevalence of E. coli O157:H7 in feces was 5.0%; ranging in pens from 0% to 90%, and varying significantly (P < 0.001) among feedlots. There was no significant association (P > 0.20) between vaccination and pen prevalence of fecal E. coli O157:H7 following initial vaccination, at reimplanting, or prior to slaughter.  相似文献   

14.
Three-hundred and forty-five herds (17 swine, 122 dairy sheep, 124 beef and 82 dairy cattle) were investigated for prevalence of Shiga toxin-producing Escherichia coli (STEC). Rectal faecal samples were selectively enriched and then examined by immunodetection techniques (Immunomagnetic Separation with anti-E. coli O157 Dynabeads, ImmunoMagnetic cell Separation (IMS) and automated enzyme-linked fluorescent immunoassay using VIDAS) and polymerase chain reaction (PCR) (rfbE and fliC genes) to assess the prevalence of E. coli O157:H7. Prevalence of non-O157 STEC was estimated by PCR screening for stx genes of 10 lactose-positive colonies grown on MacConkey agar after enrichment. PCR was used on all STEC isolates to detect stx(1), stx(2), eaeA and E-hlyA genes. Both immunodetection methods showed a moderate-good level of agreement (kappa = 0.649) but IMS showed 87.5% complementary sensitivity. Prevalence of positive herds for E. coli O157:H7 was estimated at 8.7% for sheep and 3.8% for cattle, whereas all the porcine herds tested negative. Non-O157 STEC were also absent from swine, but were isolated more frequently from ovine (50.8%) than bovine herds (35.9%). Within-herd prevalences of excretion of E. coli O157:H7 established by individual testing of 279 sheep (six herds) and 30 beef cattle (one herd) were 7.3% and 6.7% respectively. PCR analysis of 49 E. coli O157:H7 and 209 non-O157 isolates showed a different distribution of virulence genes. All E. coli O157:H7 were stx(2) gene-positive, eaeA was detected in 95.9%, and the toxigenic profile stx(2)/eaeA/E-hlyA was present in 75.5% of the isolates. Among the non-O157 STEC, prevalence of eaeA was significantly lower (5.3%) and E-hlyA was present in 50.2% of the isolates but only sporadically associated with eaeA. stx(2) was predominant in non-O157 isolates from cattle, whereas in sheep the combination stx(1)/stx(2) was more prevalent. This study demonstrated the wide distribution of STEC in ruminant herds, which represent an important reservoir for strains that pose a potential risk for human infections.  相似文献   

15.
In cattle, the lymphoid rich regions of the rectal-anal mucosa at the terminal rectum are the preferred site for Escherichia coli O157:H7 colonisation. All cattle infected by rectal swab administration demonstrate long-term E. coli O157:H7 colonisation, whereas orally challenged cattle do not demonstrate long-term E. coli O157:H7 colonisation in all animals. Oral, but not rectal challenge of sheep with E. coli O157:H7 has been reported, but an exact site for colonisation in sheep is unknown. To determine if E. coli O157:H7 can effectively colonise the ovine terminal rectum, in vitro organ culture (IVOC) was initiated. Albeit sparsely, large, densely packed E. coli O157:H7 micro-colonies were observed on the mucosa of ovine and control bovine terminal rectum explants. After necropsy of orally inoculated lambs, bacterial enumeration of the proximal and distal gastrointestinal tract did suggest a preference for E. coli O157:H7 colonisation at the ovine terminal rectum, albeit for both lymphoid rich and non-lymphoid sites. As reported for cattle, rectal inoculation studies were then conducted to determine if all lambs would demonstrate persistent colonisation at the terminal rectum. After necropsy of E. coli O157:H7 rectally inoculated lambs, most animals were not colonised at gastrointestinal sites proximal to the rectum, however, large densely packed micro-colonies of E. coli O157:H7 were observed on the ovine terminal rectum mucosa. Nevertheless, at the end point of the study (day 14), only one lamb had E. coli O157:H7 micro-colonies associated with the terminal rectum mucosa. A comparison of E. coli O157:H7 shedding yielded a similar pattern of persistence between rectally and orally inoculated lambs. The inability of E. coli O157:H7 to effectively colonise the terminal rectum mucosa of all rectally inoculated sheep in the long term, suggests that E. coli O157:H7 may colonise this site, but less effectively than reported previously for cattle.  相似文献   

16.
OBJECTIVE: To determine the prevalence of fecal shedding of Escherichia coli O157:H7 in white-tailed deer (Odocoileus virginianus) with access to cattle pastures. DESIGN: Survey study. SAMPLE POPULATION: 212 fecal samples from free ranging white-tailed deer. PROCEDURE: Fresh feces were collected on multiple pastures from 2 farms in north central Kansas between September 1997 and April 1998. Escherichia coli O157:H7 was identified by bacterial culture and DNA-based methods. RESULTS: Escherichia coli O157:H7 was identified in 2.4% (5/212) of white-tailed deer fecal samples. CONCLUSIONS AND CLINICAL RELEVANCE: There is considerable interest in the beef industry in on-farm control of E coli O157:H7 to reduce the risk of this pathogen entering the human food chain. Results of our study suggest that the design of programs for E coli O157:H7 control in domestic livestock on pasture will need to account for fecal shedding in free-ranging deer. In addition, the results have implications for hunters, people consuming venison, and deer-farming enterprises.  相似文献   

17.

Background

In Sweden, a particular subtype of verocytotoxin-producing Escherichia coli (VTEC) O157:H7, originally defined as being of phage type 4, and carrying two vtx2 genes, has been found to cause the majority of reported human infections during the past 15 years, including both sporadic cases and outbreaks. One plausible explanation for this could be that this particular subtype is better adapted to colonise cattle, and thereby may be excreted in greater concentrations and for longer periods than other VTEC O157:H7 subtypes.

Methods

In an experimental study, 4 calves were inoculated with 109 colony forming units (cfu) of strain CCUG 53931, representative of the subtype VTEC O157:H7 (PT4;vtx2;vtx2c). Two un-inoculated calves were co-housed with the inoculated calves. Initially, the VTEC O157:H7 strain had been isolated from a dairy herd with naturally occurring infection and the farm had previously also been linked to human infection with the same strain. Faecal samples were collected over up to a 2-month period and analysed for VTEC O157 by immuno-magnetic separation (IMS), and IMS positive samples were further analysed by direct plating to elucidate the shedding pattern. Samples were also collected from the pharynx.

Results

All inoculated calves proved culture-positive in faeces within 24 hours after inoculation and the un-inoculated calves similarly on days 1 and 3 post-inoculation. One calf was persistently culture-positive for 43 days; in the remainder, the VTEC O157:H7 count in faeces decreased over the first 2 weeks. All pharyngeal samples were culture-negative for VTEC O157:H7.

Conclusion

This study contributes with information concerning the dynamics of a specific subtype of VTEC O157:H7 colonisation in dairy calves. This subtype, VTEC O157:H7 (PT4;vtx2;vtx2c), is frequently isolated from Swedish cattle and has also been found to cause the majority of reported human infections in Sweden during the past 15 years. In most calves, inoculated with a representative strain of this specific subtype, the numbers of shed bacteria declined over the first two weeks. One calf could possibly be classified as a high-shedder, excreting high levels of the bacterium for a prolonged period.  相似文献   

18.
Inclusion of distillers grains (DG) in cattle diets has been shown to increase fecal shedding of Escherichia coli O157:H7. It is hypothesized that altered gut fermentation by DG may be responsible for the positive association. Therefore, feed additives affecting ruminal or hindgut fermentation of DG also may affect fecal shedding of E. coli O157:H7. The objectives of the study were to evaluate effects of monensin (33 or 44 mg/kg of DM), supplemental urea (0, 0.35, or 0.70% of DM), and ractopamine (0 or 200 mg/steer daily administered during the last 42 d of finishing) in a steam-flaked corn grain-based diet containing 30% wet sorghum DG on fecal shedding of E. coli O157:H7. Seven hundred twenty crossbred beef steers, housed in 48 pens (15 steers/pen), were assigned to dietary treatments in a randomized complete block design with a 2 × 3 × 2 factorial treatment arrangement. Fresh pen floor fecal samples (10 per/pen) were collected every 2 wk for 14 wk (July through November) and cultured for E. coli O157:H7. Isolation of E. coli O157:H7 was by selective enrichment of fecal samples in an enrichment broth, immunomagnetic separation, followed by plating onto a selective medium. Samples that yielded sorbitol-negative colonies, which were positive for indole production, O157 antigen agglutination, and contained rfbE, fliC, and stx2 were considered positive for E. coli O157:H7. Fecal prevalence data were analyzed as repeated measures using negative binomial regression to examine effects and interactions of sampling day, urea, monensin, and ractopamine. Mean fecal prevalence of E. coli O157:H7 was 7.6% and ranged from 1.6 to 23.6%. Cattle fed monensin at 44 mg/kg of feed had less (P = 0.05) fecal E. coli O157:H7 prevalence than cattle fed 33 mg/kg (4.3 vs. 6.8%). Although the reason for the reduction is not known, it is likely because of changes in the microbial ecosystem induced by the greater amount of monensin in the hindgut. Supplemental urea at 0.35 or 0.70% had no effect (P = 0.87) on fecal shedding of E. coli O157:H7. Fecal prevalence of E. coli O157:H7 were 5.3, 5.7, and 5.9% for groups fed 0, 0.35, and 0.7% urea, respectively. The inclusion of ractopamine at 0 or 200 mg/(animal?d) had no effect (P = 0.89) on fecal prevalence of E. coli O157:H7 (4.4 vs. 4.0%). Additional research is needed to confirm the reduction in fecal shedding of E. coli O157:H7 in cattle fed monensin at 44 mg/kg of feed compared with cattle fed 33 mg/kg of feed.  相似文献   

19.
There has been strong debate as to whether feeding cattle hay prior to slaughter will reduce the number and/or virulence of Escherichia coli O157:H7 in the bovine gastrointestinal tract (GIT). This study addressed this issue by comparing numbers, persistence, and acid resistance of generic coliforms and E. coli O157:H7 from various gastrointestinal tract sites of cattle fed grain or hay. Mature Angus steers, doubly cannulated into the rumen and duodenum were inoculated with E. coli O157:H7. Aliquots of digesta from the rumen, duodenum, and rectum were cultured directly or acid shocked (pH 2.0) and then cultured to determine acid resistance. The culture technique used was as sensitive as standard immunomagnetic bead separation protocols. E. coli O157:H7 from hay-fed or grain-fed cattle were similarly acid resistant in all GIT locations. In contrast, generic coliforms from the rumen and rectum of hay-fed animals were more sensitive to an acid shock than coliforms from those GIT locations in grain-fed animals. E. coli O157:H7 colonized the most distal region of the GIT and was not consistently cultured from the rumen or the duodenum. Numbers in the upper GIT did not predict numbers or persistence of E. coli O157:H7 in rectal samples. Grain-feeding or hay-feeding did not affect survival of E. coli O157:H7 in the rumen, nor its passage through the abomasum (pH 2.0) to the duodenum. These data show that generic coliforms behave differently in the bovine host than E. coli O157:H7 and that E. coli O157:H7 acid resistance was independent of animal diet.  相似文献   

20.
Escherichia coli O157:H7 is an important food-borne pathogen and cause of hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are an important reservoir of E. coli O157:H7, in which the organism colonizes the intestinal tract and is shed in the feces. Vaccination of cattle has significant potential as a pre-harvest intervention strategy for E. coli O157:H7; however, basic information about the bovine immune responses to important bacterial colonization factors resulting from infection has not been reported. The serum and fecal IgG and IgA antibody responses of adult cattle to E. coli O157:H7 intimin, translocated intimin receptor (Tir), E. coli-secreted proteins (Esp)A, EspB and O157 lipopolysaccharide (LPS) in response to infection were determined. All animals were seropositive for all five antigens prior to inoculation, with antibody titers to EspB and O157 LPS significantly higher (P<0.05) than those to Tir, intimin and EspA. After inoculation, the cattle became colonized and developed significant increases in their serum antibody titers to intimin, Tir, EspB, EspA and O157 LPS (P<0.05); however, by 42 days post-inoculation the titers to all except EspB were on the decline. In contrast, pre- and post-inoculation fecal IgG and IgA antibodies to these same antigens were not detected (<1:5). These results indicate that cattle respond serologically to E. coli O157:H7 type III secreted proteins, intimin and O157 LPS during the course of infection and the response is correlated with the extent of fecal shedding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号