首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non‐native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non‐native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non‐native trout, (ii) if native fish‐assemblage structure differs in the presence and absence of non‐native trout and (iii) if native fish‐assemblage structure differs across a gradient in abundances of non‐native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish‐assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non‐native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.  相似文献   

2.
Flow regime is one of the major determinants of establishment success for non‐native aquatic organisms. Here, we examine the influence of flow variability associated with snowmelt flood on the establishment success of non‐native brown trout in 10 streams in northern Japan. We regarded the presence of Age‐0 brown trout as the index of the successful establishment. The emergence of Age‐0 brown trout in our study region begins in May, a time that overlaps with the occurrence of snowmelt flood. The presence of Age‐0 brown trout was negatively associated with flow variability, and it was also negatively associated with summer water temperature. Our results indicate that the non‐native brown trout tends to establish in the streams with smaller snowmelt floods and lower summer water temperatures. Brown trout is an invasive, non‐native species that is problematic all over the world, and effective management strategies for preventing their further expansion are urgently needed. This study suggests that river managers should recognise that stable streams such as spring‐fed streams (i.e., low flow and summer water temperature) and flow‐regulated streams, have a higher potential risk of brown trout invasion.  相似文献   

3.
Abstract Rate of recapture (gill netting), habitat use, and diet of three strains of stocked brown trout, Salmo trutta L., were compared with resident brown trout in a Norwegian lake. The strains originated from an alpine lake, from a boreal lake, and from the native brown trout population in the lake. Overall recapture rate was 5–8% for all strains. The low recapture rate could be due to the relatively small size at stocking; mean fish length varied between 13.1 and 14.5 cm with strain and stocking method. Two years after release, the frequency of the different strains decreased from about 12% in the first year to stabilize at about 1%. The alpine strain showed the highest overall recapture rate, whereas the native strain was recaptured at an intermediate rate. The overall recapture rate of scatter-planted brown trout was higher than that of spot-planted brown trout. Immediately after being stocked, introduced fish ate less and had a less-varied diet than resident trout; however, stocked fish adopted a natural diet within the first summer. The distribution of trout between the pelagic and the upper epibenthic habitat was similar for both the resident and the stocked brown trout. Results indicate that the habitat use of stocked brown trout is adaptive and becomes similar to that of indigenous fish.  相似文献   

4.
Abstract – The trophic ecology of many fish species in cold temperate lakes is often characterized by a generalist or opportunist strategy. In this study, the diets of polytrophic brown trout in Loch Ness, Scotland, have been examined using stable isotopes of carbon and nitrogen to complement gut content analyses and aging by otolith annuli counts. Using the stable isotope ratios, it was possible to trace trout ontogeny from parr development in a natal river to piscivory in the pelagic. Potential dilution of maternal isotope signatures from eggs to parr was also demonstrated. Despite the low productivity of the loch, intraspecific variability in isotope ratios suggested dietary specialization, rather than opportunism, in some individuals.  相似文献   

5.
Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low‐elevation tributary, using single‐pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density‐dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density‐dependent population regulation, or near sources of exotics, short‐term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large‐scale management of exotic species.  相似文献   

6.
The anadromous, or sea‐going, life history form of brown trout, or sea trout ( Salmo trutta), may lead to potential mixing of populations while foraging at sea. In this article, we assess the potential that multiple populations are using common semi‐enclosed estuaries and quantify the potential levels of straying (i.e. dispersal) of foreign‐produced individuals into populations by using otolith chemical signatures as natural ‘tags’. To do so, we created a database of juvenile fish otolith chemistry (a marker of freshwater production) from four rivers and compared the chemistry of harvested fish in two estuaries important to anglers, the Renews River and Chance Cove Brook, to the database. A discriminant function analysis revealed significant differences in the otolith chemistry of juvenile fish inhabiting the four rivers with a 97% cross‐validated accuracy when classifying individual juveniles to their natal river, indicating our baseline was robust. When assigning adults caught over 3 years (2007–2009) in the recreational fishery in the Renews River estuary, it was determined that over 95% of the fish caught each year originated from Renews River. In contrast, harvested fish in Chance Cove during 2009 were disproportionately comprised of fish produced in Renews River, suggesting the potential for source‐sink population dynamics in Newfoundland. Taken as a whole, these results indicate limited population mixing in nearshore estuaries of this region, but also highlight the potential for some populations to subsidise the harvest by anglers in different areas.  相似文献   

7.
Non‐native predators may interfere with conservation efforts for native species. For example, fisheries managers have recently become concerned that non‐native brown trout may impede efforts to restore native salmon and trout in California's Trinity River. However, the extent of brown trout predation on these species is unknown. We quantified brown trout predation on wild and hatchery‐produced salmon and trout in the Trinity River in 2015. We first estimated the total biomass of prey consumed annually by brown trout using a bioenergetics model and measurements of brown trout growth and abundance over a 64‐km study reach. Then, we used stable isotope analysis and gastric lavage to allocate total consumption to specific prey taxa. Although hatchery‐produced fish are primarily released in the spring, hatchery fish accounted for most of the annual consumption by large, piscivorous brown trout (>40 cm long). In all, the 1579 (95% CI 1,279–1,878) brown trout >20 cm long in the study reach ate 5,930 kg (95% CI 3,800–8,805 kg) of hatchery fish in 2015. Brown trout predation on hatchery fish was ca. 7% of the total biomass released from the hatchery. Brown trout only ate 924 kg (95% CI 60–3,526 kg) of wild fish in 2015, but this was potentially a large proportion of wild salmon production because wild fish were relatively small. As large brown trout rely heavily on hatchery‐produced fish, modifying hatchery practices to minimise predation may enhance survival of hatchery fish and potentially reduce the abundance of predatory brown trout.  相似文献   

8.
Although non‐native species can sometimes threaten the value of ecosystem services, their presence can contribute to the benefits derived from the environment. In the Great Lakes, non‐native brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) support substantial recreational fisheries. With current efforts underway to restore once‐native Atlantic salmon (Salmo salar) to Lake Ontario, there is some concern that Atlantic salmon will impede non‐native contributions to the recreational fishery because Atlantic salmon exhibit niche overlap with brown trout and rainbow trout, particularly during the juvenile life stage. We therefore examined competition and growth of juvenile Atlantic salmon, brown trout and rainbow trout in semi‐natural streams. We found that brown trout were the most dominant and had the greatest growth rate regardless of what other species were present. Rainbow trout were more dominant than Atlantic salmon and consumed the most food of the three species. However, in the presence of brown trout, rainbow trout fed less frequently and exhibited negative growth as compared to when the rainbow trout were present with only Atlantic salmon. These data suggest that, outside of density‐dependent effects, Atlantic salmon will not impact stream production of brown trout and rainbow trout.  相似文献   

9.
Abstract –  Sea trout ( Salmo trutta ) originating from small coastal streams can be found at sea throughout the year, in contrast to conspecifics from larger rivers, which typically spend the autumn and winter in fresh water. Such an extended marine stay has been observed in coastal Skagerrak. We studied the seasonal variation in marine growth of Skagerrak sea trout based on scale increment patterns and body lengths of 563 individuals captured at sea. Growth, measured as increased body length, was rapid during summer while there was no evidence for continued growth during autumn and winter. Growth decreased with increasing age of the fish. Our results suggest that coastal Skagerrak is an important feeding area for sea trout during summer, and that an extended marine stay during autumn and winter may have trade-off benefits other than somatic growth. Alternative benefits might be increased winter survival and decreased migratory costs of juvenile fish.  相似文献   

10.
Zimmer M, Schreer JF, Power M. Seasonal movement patterns of Credit River brown trout (Salmo trutta).
Ecology of Freshwater Fish 2010: 19: 290–299. © 2010 John Wiley & Sons A/S Abstract – Movement habits in riverine populations of brown trout vary among watersheds. Thus it is important to identify factors influencing differences in individual behaviour so as to improve the information resource base available for the design of river‐specific management strategies. Such information is particularly needed in the rapidly urbanising watersheds of eastern North America where relatively little is known about anthropogenic influences on brown trout populations. In this study, we examined the influence of water temperature on brown trout behaviour in the Credit River in south‐central Ontario, Canada with respect to seasonal movement patterns. Observed patterns of movement were also correlated with variations in river discharge and habitat quality. Forty‐three radio‐tagged, adult brown trout were tracked in a confined 39.8 km portion of the Credit River from 15 May 2002 to 28 July 2003. Fish were captured in three sections of the river that differed in distance downstream and habitat quality. Fish size had little impact on movement patterns. However, there was considerable variation in seasonal movement with upstream movements to summer positions, maintenance of summer positions, downstream and often extensive movements in fall. Also observed was maintenance of winter positions and repeated upstream movements in late spring‐early summer to previously used summer positions. The elaborate movement behaviour in the Credit River population was attributed to seasonal changes in thermal habitat quality. Fish tagged in less suitable thermal habitats moved significantly more than fish from more suitable thermal habitats.  相似文献   

11.
Since the end of the 20th century, some headwaters of rivers in the eastern Pyrenees have been designated as genetic refuges to protect remaining native brown trout (Salmo trutta) diversity. The declaration was based on limited or no evidence of genetic impact from released non‐native Atlantic hatchery fish. Hatchery releases were completely banned into the genetic refuges, but pre‐existing fishing activities were maintained. Specific locations in each refuge have been monitored every 2–3 trout generations to update genetic information to accurately assess the contribution of these reservoirs to the preservation of native brown trout gene pools. This work updates genetic information to year 2014 in three of these locations (in Ter, Freser and Flamisell rivers). Previous studies identified hatchery introgressed populations within refuges and suggested discrepancies between the underlying intention of the genetic refuges and the gene pools detected. Therefore, we also examined genetic divergences among locations inside refuge river segments. Combined information at five microsatellite and the lactate dehydrogenase C (LDH‐C*) loci showed reduced but significant temporal native allele frequency fluctuations in some of the above specific locations that did not modify overall levels of local diversity and river divergences. Bayesian clustering analyses confirmed the presence of differentiated native units within each genetic refuge. Some locations of the Freser River within the genetic refuge area showed high hatchery impact of non‐native fish (over 20%). We discuss additional local actions (releases of native fish, selective removals and fishery reinforcement with sterile individuals) to improve the conservation objective of genetic refuges.  相似文献   

12.
Abstract Non‐native lake trout, Salvelinus namaycush (Walbaum), threaten native salmonid populations in the western United States. Effective management of lake trout requires understanding movements within connected lake and river systems. This study determined the seasonal movements of subadult lake trout in the Flathead River upstream of Flathead Lake, Montana, USA using radio telemetry. The spatiotemporal distribution of lake trout in the river was related to water temperature. Lake trout were detected in the river primarily during autumn, winter and spring, when water temperatures were cool. By contrast, fewer were detected when temperatures were warmest during summer and during high spring flows. Downriver movements to Flathead Lake occurred throughout autumn and winter when water temperature decreased below 5 °C, and in late spring as water temperature rose towards 15 °C and river discharge declined following spring runoff. Upriver movements occurred primarily in October, which coincided with migrations of prey fishes. These results suggest that lake trout are capable of moving throughout connected river and lake systems (up to 230 km) and that warm water temperatures function as an impediment to occupancy of the river during summer. Controlling source populations and maintaining natural water temperatures may be effective management strategies for reducing the spread of non‐native lake trout.  相似文献   

13.
Abstract –  We studied the impact of two exotic salmonid species (brook trout, Salvelinus fontinalis and rainbow trout, Oncorhynchus mykiss ) on native brown trout ( Salmo trutta fario ) habitat, growth and survival. Habitat selection and vertical distribution between young-of-the-year of the three species were examined in a stream aquarium under different sympatric and allopatric combinations. In addition, similar species combinations were introduced in a Pyrenean mountain stream (southwest France) in order to extend laboratory results to growth and apparent survival. Both laboratory and field results indicated that rainbow trout significantly affected native brown trout habitat selection and apparent survival. On the contrary, brown trout habitat, growth and apparent survival were hardly affected by brook trout. These results support the idea that rainbow trout negatively influence native brown trout, and that competition could influence the outcome of fish biological invasions in freshwater ecosystems.  相似文献   

14.
Dendrochronology (tree‐ring analysis) techniques have been increasingly applied to generate biochronologies from the otolith growth‐increment widths of marine and freshwater fish species. These time series strongly relate to instrumental climate records and are presumed to reflect interannual variability in mean fish condition or size. However, the relationship of these otolith chronologies to fish somatic growth has not been well described. Here, this issue was addressed using yellowfin sole (Limanda aspera) in the eastern Bering Sea, for which a 43‐yr otolith chronology was developed from 47 otoliths and compared with body size for 6943 individuals collected in 1987, 1994, and 1999 through 2006. Among several metrics of size normalized for age and sex, average body mass index (defined as weight/length) had the strongest relationship to the otolith chronology, especially when the chronology was averaged over the 5 yr preceding fish capture date (R2 = 0.88; < 0.001). Overall, sample‐wide anomalies in otolith growth reflected sample‐wide anomalies in body size. These findings suggest that otolith chronologies could be used as proxies of body size in data‐poor regions or to hind‐cast somatic growth patterns prior to the start of fisheries sampling programs.  相似文献   

15.
Abstract – Management policies balancing harvest and conservation of natural populations of fish are difficult to establish, both scientifically and politically. This issue is particularly difficult when those populations represent native genetic resources. Since 1997, several brown trout populations in the eastern Pyrenees Mountains (Spain) were designated as ‘genetic refuges’ under varying fishing regulations, where releases of hatchery‐origin fish are not permitted. We analysed genetic variation in samples of brown trout from six of those refuge populations and four non‐refuge populations within the same region. Each population was sampled in four separate years: 1993, 1999, 2004 and 2006. Our analyses were based on a diagnostic allele (LDH‐C*90) that distinguishes native and exogenous hatchery populations. Comparisons were based on stocking histories before and after refuge designations and on three management strategies: fished, unfished and catch‐and‐release. Overall, we detected significant genetic introgression resulting from past stocking practices despite the current restriction of hatchery releases imposed by the recent genetic refuge policy. However, this new policy has prevented detectable introgression from increasing throughout the region and together with additional measures on length and number of captured fish is contributing to self‐sustained fisheries that are achieving conservation goals. Quick acceptance of ‘genetic refuges’ by anglers in one particular river, the Ter River basin, has been a key factor in protecting native gene pools compared with the Segre River basins where refuges were not readily accepted.  相似文献   

16.
Radio telemetry data were analysed to assess the microhabitat use, movement patterns, home range overlap and interspecific interactions of non‐native pumpkinseed Lepomis gibbosus (L.) and native brown trout Salmo trutta (L.) in a small English stream located immediately below a commercial angling lake from which pumpkinseed escaped. Although both species favoured pool habitats, brown trout preferred higher velocities and coarser substrata compared with pumpkinseed. Also, some individual brown trout preferred deeper waters than did pumpkinseed. Home range area of brown trout was substantially larger than that of pumpkinseed in spring and summer, and for both species, home range area in autumn was significantly smaller than in the other seasons. Range centre distribution analysis revealed that both species were distributed significantly nonrandomly within the stream during all seasons. There was substantial home range overlap between the two species in all seasons, the greatest being in spring. Overall distances moved were greatest during spring for both species, with brown trout moving greater distances relative to pumpkinseed. However, the absence of mutual attraction or avoidance between the species, as well as the lack of cohesion in preferred habitats and strong territorial fidelity, suggests little or no impact of introduced pumpkinseed on resident brown trout.  相似文献   

17.
18.
Abstract– The eight papers resulting from the Ecological Genetics session of the symposium Ecology of Stream Fish: State of the Art and Future Prospects (Luarca, Spain, April 1998) describe the use of molecular genetic markers to investigate questions of population distinctness, interbreeding, and adaptation in five salmonid species. Widely contrasting ecological distinctions described in four species indigenous to western North America [steelhead (rainbow) trout, sockeye salmon, pink salmon and bull trout] reflect past natural and human-induced activities, serving to guide future management and conservation actions through optimizing adaptive opportunities, and preventing genetic losses through localized extinctions. Studies of brown trout contrast widespread introgressions from exogenous hatchery introductions that threaten the integrity of native Spanish populations with a reduced threat based on use of indigenous fish in Portuguese hatcheries. A 9-year study of natural progeny of two genetically distinct Swedish brown trout populations introduced to a previously trout-free area identifies apparent local adaptations as a model to guide other translocations.  相似文献   

19.
Abstract –  Anthropogenic barriers that may interfere or prevent fish migration are commonly found in streams throughout the distribution of salmonids. Construction of fish passages in streams is a common solution to this problem. However, the goal with fish passages is often, at least in Scandinavia, to allow Atlantic salmon ( Salmo salar L.) and migratory brown trout ( S. trutta L.) to get access to spawning areas above these barriers. Hence, the fish passages may often only be open during the spawning migration of salmonids (late summer to autumn). We present data, on wild brown trout migration, from two trapping systems in two Scandinavian streams showing that intra- and interstream migrations are common throughout the summer and autumn. Moreover, differences in size were found between trap-caught trout and electrofished trout where trapped trout were generally larger than electrofished trout. We suggest that the current regime with fish passages only open parts of the year can have negative effects on populations by depriving trout from the possibility to perform migrations throughout the year.  相似文献   

20.
Billman EJ, Tjarks BJ, Belk MC. Effect of predation and habitat quality on growth and reproduction of a stream fish.
Ecology of Freshwater Fish 2011: 20: 102–113. © 2010 John Wiley & Sons A/S Abstract – Anthropogenic disturbances are rarely independent, requiring native fishes to respond to multiple factors to persist in changing environments. We examined the interaction of predation environment (presence of introduced brown trout, Salmo trutta) and habitat quality on growth and reproduction of southern leatherside chub, Lepidomeda aliciae, a small‐bodied stream fish native to central Utah, USA. Southern leatherside chub were sampled from four streams representing a complete two‐factor cross of predation environment and habitat quality. Growth was estimated using increment analysis of annuli on otoliths, and reproductive traits were measured for both sexes. Southern leatherside chub growth was greater in high‐quality than in low‐quality habitats, and greater in predator than in nonpredator environments. However, fish exhibited a greater growth response to presence of brown trout in low‐quality habitats. Southern leatherside chub growth followed predictions of plastic responses to resource availability based on habitat quality and predation environment (lethal vs. nonlethal effects). Reproductive allocation (gonad wet mass) was significantly greater in low‐quality versus high‐quality habitats, but was unaffected by predation environment. Other female life‐history traits were affected either by both effects or their interaction. Reproductive responses to habitat quality and predation environment were consistent with predictions based on differential mortality. Southern leatherside chub growth and reproduction responded differently to the combination of habitat quality and predation environment, thus demonstrating the importance of assessing interacting effects of anthropogenic disturbances to more fully comprehend impacts on native species and to appropriately manage, recover and restore these species and their habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号