共查询到20条相似文献,搜索用时 0 毫秒
1.
Nicolas Reynier Jean-François Blais Guy Mercier Simon Besner 《Journal of Soils and Sediments》2013,13(7):1189-1200
Purpose
In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.Materials and methods
A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i ?=?2.5–30 mg kg?1) and inorganic ([As] i ?=?50–250 mg kg?1, [Cr] i ?=?35–220 mg kg?1, and [Cu] i ?=?80–350 mg kg?1) compounds.Results and discussion
Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH]?=?1 N, [cocamidopropylbetaine] i ?=?2 % w w?1, t?=?2 h, T?=?80 °C, and PD?=?10 %).Conclusions
The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination. 相似文献2.
Optimization of the solid-liquid extraction conditions for trans-resveratrol, trans--viniferin, ferulic acid, and total phenolics from milled grape canes has been investigated. The temperature and ethanol concentration were found to be major process variables for all responses, whereas the solvent to solid ratio was found not to be significant for any of the responses studied. The yields of trans-resveratrol, trans--viniferin, and total phenolics increased with increasing temperature. Maximum yields of trans-resveratrol (4.25 mg/g dw), trans--viniferin (2.03 mg/g), and total phenolics (9.28 mg/g dw) were predicted from the combination of a moderate ethanol concentration (50-70%) and the highest temperature (83.6 degrees C), whereas an ethanol concentration of 35% at the lowest temperature studied (16.4 degrees C) was optimal for the extraction of ferulic acid (1.05 mg/g dw). Effective diffusivity values of resveratrol in the solid phase, D eff for different extraction conditions, were calculated by fitting the experimental results to a model derived from the Fick's second law. Effective diffusivity of resveratrol in the solid phase varied from 3.1 x 10 (-13) to 26.6 x 10 (-13) m (2) s (-1) with changing extraction conditions. The increase in effective diffusivity of resveratrol was observed with increasing temperature, and the highest predicted level was obtained when using 54% ethanol/water mixture at 83.6 degrees C. The increase in ethanol concentration exhibited the favorable effect up to 50-55%, thereafter effective diffusivity decreased with a further increase in concentration. 相似文献
3.
Taamalli A Arráez-Román D Ibañez E Zarrouk M Segura-Carretero A Fernández-Gutiérrez A 《Journal of agricultural and food chemistry》2012,60(3):791-798
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed. 相似文献
4.
Turner C Whitehand LC Nguyen T McKeon T 《Journal of agricultural and food chemistry》2004,52(1):26-32
The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds. 相似文献
5.
Dos Santos Freitas L de Oliveira JV Dariva C Jacques RA Caramão EB 《Journal of agricultural and food chemistry》2008,56(8):2558-2564
The main objective of this work was to compare the extraction of grape seed oil with compressed carbon dioxide and propane on the extraction yields and chemical characteristics of free glycerol compounds. The experiments were performed in a laboratory scale unit in the temperature range of 30 to 60 degrees C and pressures from 60 to 254 bar. The results showed that propane is a more suitable solvent for grape seed oil extraction than carbon dioxide, as higher extractions yields and a very fast kinetic of extraction were achieved with this solvent. In relation to compressed carbon dioxide extractions, both temperature and density presented a very pronounced and positive effect on the extraction yield. The oils extracted were analyzed qualitatively and quantitatively with regard to the free glycerol compounds, mainly fatty acids, ethyl, and methyl esters. The results showed that these compounds are present in low concentration in vegetable oil (<3%) and that, in general, samples extracted with propane present a smaller amount of peaks of free glycerol compounds in the oil than samples extracted with carbon dioxide. 相似文献
6.
Canals R Llaudy MC Valls J Canals JM Zamora F 《Journal of agricultural and food chemistry》2005,53(10):4019-4025
The aim of this paper is to study how grape ripeness and ethanol concentration affect the extraction of color and phenolic compounds from skins and seeds during the maceration/fermentation process. Simulated maceration assays were carried out with the grapes at three stages of berry development (vitis vinifera cv. Tempranillo) and different percentages of ethanol in the maceration media. Both ripeness and ethanol content have a considerable effect on the extraction of color and phenolic compounds. Of these two factors, ripeness increases the extractability most. The presence of ethanol in the medium facilitates anthocyanin and especially proanthocyanidin extraction, but it also decreases copigmentation phenomena, which can decrease the color intensity. The higher the ethanol concentration is in the maceration media, the higher the astringency of proanthocyanidins. 相似文献
7.
Belancic A Gunata Z Vallier MJ Agosin E 《Journal of agricultural and food chemistry》2003,51(5):1453-1459
Six hundred ten yeast colonies isolated from various vineyards in Chile were screened for the presence of a beta-glucosidase activity as well as the resistance to glucose and ethanol inhibition. Among them, Debaryomyces vanrijiae was found to produce high levels of an extracelular beta-glucosidase which was tolerant to glucose (K(i) = 439 mM) and ethanol inhibitions. The enzyme (designated DV-BG) was purified to apparent homogeneity, respectively, by gel filtration, ion-exchange, and chromatofocusing techniques. Its molecular weight was 100 000, and its pI 3.0, optimum pH, and temperature activities were 5.0 and 40 degrees C, respectively, and had a V(max) of 47.6 micromol min(-)(1) mg(-)(1) and a K(m) of 1.07 mM. The enzyme was active against different beta-d-glucosides including glucosidic flavor precursors. The disaccharidic flavor precursors were not substrates for the enzyme. When added to a Muscat grape juice, the concentration of several monoterpenes increased as the consequence of its hydrolytic activity. 相似文献
8.
Rogrio Borguete Alves RAFAEL Maria Luisa FERNNDEZ-MARCOS Stefania COCCO Maria Letizia RUELLO Flavio FORNASIER Giuseppe CORTI 《土壤圈》2020,30(6):719-733
Phosphorus (P) deficiency is one of the main constraints on crop production in Arenosols (acid sandy soil). The high cost of P fertilizers may represent an insurmountable obstacle in many poor countries, leaving the exploitation of their own calcareous and phosphate rocks as the only low-cost and long-term alternative. Biochar is suggested to have positive effects on soil properties; however, there is no published research on the synergistic effects of biochar and rocky materials in modifying soil properties. The aim of this study was to investigate the chemical and biochemical responses of an acid Arenosol treated with phosphate rock (PR), calcareous rock (CR), and biochar (BC), and the implications for corn yield. A soil from Marracuene District, Mozambique was used, where corn was grown for 90 d with the soil treated with:no addition (control), water-soluble zinc phosphite fertilizer (WSP), PR, WSP+CR, WSP+BC, WSP+CR+BC, PR+BC, and PR+CR+BC. Biochar was produced by pyrolysis of babycorn peels for 4 h at 450℃ and applied at 11 g kg-1. The soil pHH2O increased from about 4.54 in the control to 7.38 in the PR+CR+BC treatment. Easily oxidizable organic carbon, cation exchange capacity, and available P were higher in the treatments containing BC than in the control. The treatments containing CR and/or BC led to the highest activities of alkaline phosphomonoesterase, phosphodiesterase, and α-glucosidase, which increased P availability and gave the greatest biomass and yields. We suggest that biochar provides additional soluble P and supplies adsorption sites for phosphate, preventing its evolution to unavailable forms. Thus, PR applied together with BC contributed to an 840% yield increase compared to the control. The treatments containing WSP and BC facilitated phosphite oxidation to phosphate and increased crop yield. 相似文献
9.
Busse-Valverde N Gómez-Plaza E López-Roca JM Gil-Muñoz R Bautista-Ortín AB 《Journal of agricultural and food chemistry》2011,59(10):5450-5455
The effect of three enological techniques (low temperature prefermentative maceration, must freezing with dry ice, and the use of a maceration enzyme) on the extraction of anthocyanins and proanthocyanidins from must to wine during fermentative maceration was studied to determine the extent to which these compounds are extracted and to assess the changes on their qualitative composition due to enological technique applied. The results showed that the dry ice treatment led to wines with high color intensity and high anthocyanin content, the maximum rate of extraction being observed the first 6 days of fermentative maceration. Regarding the effect of the different techniques on the quantitative and qualitative composition of proanthocyanidins, only the dry ice treatment seemed to favor the extraction of high molecular weight skin proanthocyanidins. The low temperature prefermentative maceration treatment led to the highest concentration of proanthocyanidins at the moment of pressing; however, this treatment, contrary to expectations, led to wines with the highest content of seed-derived proanthocyanidins. The use of the maceration enzyme also increased the concentration of proanthocyanidins during all of the fermentative process, as compared to a control wine, although the increase was not only due to skin proanthocyanidins but also seed proanthocyanidins. We have demonstrated in this study that maceration enzymes also facilitate seed phenolic extraction. 相似文献
10.
Cruciferous oilseeds are important sources of oil, proteins, and glucosinolates (GLs), potentially available when biorefinery processes are used. The proposed extraction technology is based on the use of reverse micelles (RMs) made with cetyltrimethylammonium bromide (CTAB) dispersed in organic solvent. The physicochemical properties of this extraction system and the good water solubility of many high value compounds, such as GLs and some proteins, permit the simultaneous extraction of oil, and these products from cruciferous oilseed meals. This procedure is based on three main steps: (i) seed conditioning; (ii) solid-liquid extraction by RM solution; and (iii) back-transfer of the RM solution for recovery of the extracted compounds. The method makes it possible to simultaneously extract almost the same amount of oil as with pure organic solvents used in the current extraction plants and more than 90% of soluble proteins and GLs. It is a promising biorefinery technology alternative to traditional oil extraction processes. 相似文献
11.
Pinelo M Rubilar M Jerez M Sineiro J Núñez MJ 《Journal of agricultural and food chemistry》2005,53(6):2111-2117
Grape byproducts were subjected to an extraction process under various different experimental conditions (namely, solvent type, temperature, solvent-to-solid ratio, time contact, and raw material) in order to study the effect of these conditions on the yield of phenolic compounds and the corresponding antiradical activity of extracts. Although the order of decreasing capacity to extract soluble materials was ethanol > methanol > water, methanol was the most selective for extracting phenolic compounds. Temperature and solvent-to-solid ratio were found to have a critical role in extraction efficiency; values of 50 degrees C (between 25 and 50 degrees C) and 1:1 (between 1:1 and 5:1) maximized the antiradical activity of phenolic extracts. In addition, extracts from grape samples previously subjected to distillation reached higher antiradical values in comparison to those coming directly from pressing; in both cases, seed extracts showed better results than those of stem when ethanol or water was employed, whereas the opposite occurred in the case of methanol. These differences were attributed to the different phenolic compositions of the considered fractions. 相似文献
12.
Barata A Campo E Malfeito-Ferreira M Loureiro V Cacho J Ferreira V 《Journal of agricultural and food chemistry》2011,59(6):2543-2553
In the present work, the aroma profiles of wines elaborated from sound and sour rot-infected grapes as raw material have been studied by sensory analysis, gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS), with the aim of determining the odor volatiles most likely associated with this disease. The effect of sour rot was tested in monovarietal wines produced with the Portuguese red grape variety Trincadeira and in blends of Cabernet Sauvignon and sour rotten Trincadeira grapes. Wines produced from damaged berries exhibited clear honey-like notes not evoked by healthy samples. Ethyl phenylacetate (EPhA) and phenylacetic acid (PAA), both exhibiting sweet honey-like aromas, emerged as key aroma compounds of sour rotten wines. Their levels were 1 order of magnitude above those found in controls and reached 304 and 1668 μg L(-1) of EPhA and PAA, respectively, well above the corresponding odor thresholds. Levels of γ-nonalactone also increased by a factor 3 in sour rot samples. Results also suggest that sour rot exerts a great effect on the secondary metabolism of yeast, decreasing the levels of volatiles related to fatty acids and amino acid synthesis. The highest levels of γ-decalactone of up to 405 μg L(-1) were also found in all of the samples, suggesting that this could be a relevant aroma compound in Trincadeira wine aroma. 相似文献
13.
Careri M Corradini C Elviri L Nicoletti I Zagnoni I 《Journal of agricultural and food chemistry》2004,52(23):6868-6874
The application of liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) was investigated for the analysis of trans-resveratrol in red wine, grape skin, grape pomace, and winemaking byproducts. Chromatographic elution performed under isocratic reversed-phase conditions using a C18 narrow-bore LC column allowed retention times lower than 12 min to be obtained. Qualitative analysis was performed in negative-ion (NI) full-scan and product-ion scan acquisition modes, whereas method validation in terms of linearity, detection limits, accuracy, and robustness was carried out under NI selected reaction monitoring conditions. The matrix-matched detection limit was calculated in the low parts per billion range (10 microg/L). Results of the application of the method to red wine, grape, and winemaking byproduct samples were compared with those obtained using an LC-UV/DAD technique. Determination of trans-resveratrol in the samples investigated showed that the highest concentration was found in red wine, whereas wine made from grape pomace contained the lowest content. 相似文献
14.
Rabaud NE Ebeler SE Ashbaugh LL Flocchini RG 《Journal of agricultural and food chemistry》2002,50(18):5139-5145
Few analytical methods exist that combine chemical and sensory analysis of odorous compounds in whole air. Volatile organic compounds were collected by sampling air downwind from a small dairy through sorbent tubes of Tenax TA and Carboxen 569. Samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry and mass spectrometry. Because compounds are concentrated during sampling, sensory analysis encountered compounds at a concentration 40 times that in air, making this a useful method for identifying trace compounds participating in odor. Twenty odorous and nonodorous compounds were identified and quantified, including straight-chain and aromatic hydrocarbons, chlorinated compounds, alcohols, ketones, aldehydes, and organic acids, at air concentrations of 0.55-320.20 microg/m(3). Compound peaks were characterized by odors ranging from offensive to pleasant, demonstrating the integrative nature of olfaction. This method could be useful in studying many kinds of odors in air. 相似文献
15.
Kuo JM Hwang A Yeh DB Pan MH Tsai ML Pan BS 《Journal of agricultural and food chemistry》2006,54(8):3151-3156
The objective of the present study was to purify and characterize the lipoxygenase (LOX) from banana leaf (Giant Cavendishii, AAA), an unutilized bioresource. LOX was extracted, isolated, and purified 327-fold using 25-50% saturation of ammonium sulfate fractionation, hydroxyapatite column separation, and gel filtration on Superdex 200. The molecular mass of the purified LOX was 85 kDa, K(m) was 0.15 mM, and V(max) was 2.4 microM/min.mg using linoleic acid as substrate. Triton X-100 was required in the extraction medium; otherwise, no LOX activity was detected. LOX activity increased with the concentration of Triton X-100 with an optimum at 0.1%. The optimal pH of the purified LOX from banana leaf was 6.2, and optimal temperature was 40 degrees C. The LOX showed the highest reactivity toward 18:2 followed by 18:3 and 20:4. A very low reaction rate was observed toward 20:5 and 22:6. On the basis of retention time in normal phase HPLC, the products of 18:2 or 18:3 catalyzed by purified LOX were hydroperoxyoctadecadienoic acid or hydroperoxyoctadecatrienoic acid. It seems that 9-LOX is the predominant enzyme in banana leaf. Banada leaf dried at 110 degrees C for 2 h developed algal aroma. Banana leaf extract stored at 10 degrees C for 12 h formed an oolong tea-like flavor. Banana leaf extract reacted with 18:2 or soybean oil pretreated with bacterial lipase produced green and melon-like aroma, whereas the same reaction with 18:3 produced a sweet, fruity, cucumber-like flavor note. 相似文献
16.
Asami DK Hong YJ Barrett DM Mitchell AE 《Journal of agricultural and food chemistry》2003,51(5):1237-1241
Secondary phenolic metabolites play an important role in plant defense mechanisms, and increasing evidence indicates that many are important in human health. To date, few studies have investigated the impact of various agricultural practices on levels of secondary plant metabolites. To address this issue, the total phenolic (TP) content of marionberries, strawberries, and corn grown by sustainable, organic, or conventional cultural practices were measured. Additionally, the effects of three common postharvest processing treatments (freezing, freeze-drying, and air-drying) on the TP content of these agricultural products were also investigated. Statistically higher levels of TPs were consistently found in organically and sustainably grown foods as compared to those produced by conventional agricultural practices. In all samples, freeze-drying preserved higher levels of TPs in comparison with air-drying. 相似文献
17.
Robert C Devillers T Wathelet B Van Herck JC Paquot M 《Journal of agricultural and food chemistry》2006,54(19):7167-7174
Chicory root pectin was isolated by acid extraction followed by alcohol precipitation. Because the extraction conditions have important effects on the features of pectins, an experimental design was used to study the influence of 17 different extraction parameters on yield and composition of pectin: pH, temperature, time of extraction, solid/liquid ratio, and different pretreatments of the pulps before extraction. Twenty extractions were conducted and examined for their significance on yield and sugar content using the Plackett-Burman factorial design. The acid extraction of chicory roots resulted in an average yield of 11% containing 86% of sugars. It was found that extraction temperature, time, protease pretreatment, water purity, and water washing of pulps significantly affected yield and pectin composition with an increase of yield and purity of pectin in harsher extraction conditions. 相似文献
18.
A fast method based on liquid-liquid microextraction (LLME) has been developed for the analysis of volatile compounds in fruit and vegetable juices. The method was tested in an aqueous solution containing 49 common flavor compounds typically found in fruit aroma. Influence on extraction yield of the salts used, their levels, and the time of extraction was investigated. The efficiency of n-propyl gallate to inhibit the formation of secondary compounds from lipids during the crushing of fruit tissues was also tested. The proposed method was then applied to several authentic samples such as melons, peaches, grapes, strawberries, and tomatoes. The advantages and limitations of LLME are discussed. 相似文献
19.
Chemical characterization of Cuban propolis by HPLC-PDA, HPLC-MS, and NMR: the brown, red, and yellow Cuban varieties of propolis 总被引:2,自引:0,他引:2
Cuesta-Rubio O Piccinelli AL Fernandez MC Hernández IM Rosado A Rastrelli L 《Journal of agricultural and food chemistry》2007,55(18):7502-7509
Sixty-five samples of propolis were collected from eleven regions of Cuba; methanolic extracts of propolis were prepared from all samples, and a classification method was developed using a combination of NMR, HPLC-PDA, and HPLC-ESI/MS techniques. The analysis of (1)H and (13)C NMR spectra and chromatographic profiles of all propolis extracts allowed the definition of three main types of Cuban propolis directly related to their secondary metabolite classes: brown Cuban propolis (BCP), rich in polyisoprenylated benzophenones, red Cuban propolis (RCP), containing isoflavonoids as the main constituents, and yellow Cuban propolis (YCP), probably with aliphatic compounds. Subsequently, the principal compounds of the brown and red types were characterized by HPLC-ESI/MS analysis. Instrumental techniques used are complementary; NMR was shown to be a quick and informative tool for the rapid analysis of crude propolis polar extracts and allowed the identification of the main class of secondary metabolites, while LC-PDA and LC-MS techniques were useful tools for qualitative and quantitative analysis of marker compounds of Cuban propolis. 相似文献
20.
D. P. Ormrod J. L. Deveau B. A. Marie O. B. Allen 《Water, air, and soil pollution》1988,39(1-2):187-199
Maize (Zea mays L.), soybean (Glycine max L.), and tomato (Lycopersicon esculentum Mill.) plants were grown in a controlled environment and exposed for 6 hr daily for 7 days to O3 at 0.15 μL L?1 and/or SO2 at 0.30 μL L?1 (daily exposures). Some plants exposed daily to O3 were also exposed to SO2 for 6 hr on the first, third, fifth, or seventh day of O3 exposure (variable exposures) and some plants exposed daily to SO2 were treated similarly with O3 to determine the growth effects of O3 or S02 pre- and/or post-treatments on S02 and O3 mixture response. Growth sensitivity to 6 hr S02 or 6 hr O3 treatments was generally affected by the previous history of O3 or SO2 exposure, respectively. Species differed in the number of days of O3 or SO2 treatments required to elicit maximum sensitivity to a single 6 hr O3 and SO2 treatment. Linear contrasts compared variable with daily exposures for the S02 and O3 regimes. Plants exposed to the gas mixture for a single day (variable exposures) tended to be smaller than those exposed to the gas mixture daily, with the exception of soybean exposed to SO2 during daily O3. The six treatments were carried out in eight exposure chambers, as a partially balanced incomplete block design in blocks of four due to separate environmental control of the exposure facilities. The partially balanced incomplete block design proved to be about 2.6 times as efficient as a complete block design. The inclusion of covariates further increased precision. 相似文献