首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After IV, IM, and subcutaneous injection of single dosages of amikacin (5, 10, and 20 mg/kg of body weight) in each of 4 dogs, the elimination kinetics of amikacin were determined. The pattern of urinary excretion and cumulative amount excreted unchanged in 24 hours were also determined. Amikacin had a short half-life (approx 1 hour) that was independent of the dosage. Intravenous injection of 10 mg/kg gave apparent volume of distribution of 226 +/- 37 ml/kg and body clearance of 2.64 +/- 0.24 ml/min.kg (mean +/- SD, n = 4). Within 6 hours, greater than 90% of the antibiotic was excreted in the urine, regardless of the route of administration. For isolates of common bacterial species from the canine urinary tract, minimum inhibitory concentrations of amikacin, gentamicin, tobramycin, and kanamycin were determined in vitro. Cumulative percentages were approximately the same for urinary isolates of Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and coagulase-positive staphylococci that were susceptible (minimum inhibitory concentrations less than or equal to 32 micrograms/ml) to increasing concentrations of amikacin, gentamicin, and tobramycin, in vitro. Klebsiella pneumoniae was significantly more susceptible to amikacin than were the other bacteria evaluated. Widest variations in susceptibility to aminoglycosides were found with urinary isolates of streptococcal species. For dogs with normal renal function, an amikacin dosage of 10 mg/kg (IM or subcutaneously) is recommended every 8 hours for treatment of systemic infections, and every 12 hours for treatment of urinary tract infections caused by susceptible bacteria.  相似文献   

2.
ObjectiveTo assess the effects of cytochrome P450 (CYP) inhibitors (ketoconazole, chloramphenicol, trimethoprim, fluoxetine, cimetidine and medetomidine) in various combinations on the pharmacokinetics of oral methadone in Greyhound dogs to determine the specific effects of the different inhibitors and if a clinically relevant interaction occurs.Study designNon-randomized, sequential design.AnimalsSix healthy Greyhound dogs (three male, three female).MethodsCanine CYP inhibitors (ketoconazole, chloramphenicol, trimethoprim, fluoxetine, cimetidine and medetomidine) were administered in varying combinations prior to the administration of oral methadone. Plasma was obtained from each dog to enable the determination of methadone and CYP inhibitor drug concentrations using liquid chromatography with either mass spectrometry or ultraviolet detection.ResultsSignificant increases in the area under the curve (AUC) and maximum plasma concentrations (CMAX) of methadone occurred in all groups administered chloramphenicol. The AUC (6 hours ng mL−1) and CMAX (6 ng mL−1) of methadone significantly increased to 541 hours ng mL−1 and 47.8 ng mL−1, respectively, when methadone was administered with chloramphenicol as a sole inhibitor. There were no significant effects of CYP inhibitors other than chloramphenicol on methadone pharmacokinetics, which suggests that chloramphenicol was primarily responsible for the pharmacokinetic interaction.Conclusions and clinical relevanceThis study demonstrated significant effects of chloramphenicol on the pharmacokinetics of oral methadone. Further studies should investigate the effects of chloramphenicol on methadone pharmacokinetics in multiple dog breeds and examine whether oral methadone would be an effective analgesic in dogs. In addition, the safety of chloramphenicol and its effects on the pharmacokinetics of parenteral methadone warrant assessment.  相似文献   

3.
Pharmacokinetics and duration of anesthesia of methohexital, pentobarbital, thiamylal, and thiopental in Greyhound and non-Greyhound, mixed-breed dogs were compared. In all dogs evaluated, pentobarbital induced the longest duration of anesthesia and methohexital induced the shortest duration. Pharmacokinetics of pentobarbital and methohexital were similar in both groups of dogs. Thiobarbiturates induced longer anesthetic effects in Greyhound dogs than in mixed-breed dogs. Plasma thiobarbiturate concentrations remained above normal longer in Greyhound dogs than in mixed-breed dogs. Disposition of thiobarbiturates in Greyhound dogs was characterized by nonlinearity from 45 minutes to 8 hours after dosing.  相似文献   

4.
The pharmacokinetics of amikacin sulphate were investigated in calves and sheep. Five animals of each species were given 7.5 mg kg-1 intravenously and intramuscularly. After intravenous administration the pharmacokinetic parameters significantly different (P less than 0.01) between calves (first value) and sheep (second value), were: the initial concentration (87.05, 146.6 micrograms ml-1), the apparent distribution volume (350, 200 ml kg-1), the area under curve (5512, 11,018 min micrograms ml-1) and the clearance (1.5, 0.7 ml min-1 kg-1). After dosing intramuscularly the peak concentration (23.5, 34.36 micrograms ml-1), the peak time (45, 75 min) and the area under curve (5458, 9191 min micrograms ml-1) were significantly different (P less than 0.01). No significant differences were observed in the terminal halflife values, suggesting that elimination rate was independent of both route of administration and animal species. The drug in aqueous solution showed a good bioavailability in both animal species (about 0.87 in sheep and greater than 0.99 in calves) despite the greater serum concentrations always attained in sheep.  相似文献   

5.
6.
ObjectiveTo determine if general anaesthesia influences the intravenous (IV) pharmacokinetics (PK) of acetaminophen in dogs.Study designProspective, crossover, randomized experimental study.AnimalsA group of nine healthy Beagle dogs.MethodsAcetaminophen PK were determined in conscious and anaesthetized dogs on two separate occasions. Blood samples were collected before, and at 5, 10, 15, 30, 45, 60 and 90 minutes and 2, 3, 4, 6, 8, 12 and 24 hours after 20 mg kg–1 IV acetaminophen administration. Haematocrit, total proteins, albumin, alanine aminotransferase, aspartate aminotransferase, urea and creatinine were determined at baseline and 24 hours after acetaminophen. The anaesthetized group underwent general anaesthesia (90 minutes) for dental cleaning. After the administration of dexmedetomidine (3 μg kg–1) intramuscularly, anaesthesia was induced with propofol (2–3 mg kg–1) IV, followed by acetaminophen administration. Anaesthesia was maintained with isoflurane in 50% oxygen (Fe′Iso 1.3–1.5%). Dogs were mechanically ventilated. Plasma concentrations were analysed with high-performance liquid chromatography. PK analysis was undertaken using compartmental modelling. A Wilcoxon test was used to compare PK data between groups, and clinical laboratory values between groups, and before versus 24 hours after acetaminophen administration. Data are presented as median and range (p < 0.05).ResultsA two-compartmental model best described time–concentration profiles of acetaminophen. No significant differences were found for volume of distribution values 1.41 (0.94–3.65) and 1.72 (0.89–2.60) L kg–1, clearance values 1.52 (0.71–2.30) and 1.60 (0.91–1.78) L kg–1 hour–1 or terminal elimination half-life values 2.45 (1.45–8.71) and 3.57 (1.96–6.35) hours between conscious and anaesthetized dogs, respectively. Clinical laboratory variables were within normal range. No adverse effects were recorded.Conclusions and clinical relevanceIV acetaminophen PK in healthy Beagle dogs were unaffected by general anaesthesia under the study conditions. Further studies are necessary to evaluate the PK in different clinical contexts.  相似文献   

7.
Comparative pharmacokinetics of doxycycline in cats and dogs   总被引:3,自引:0,他引:3  
The disposition of doxycycline hyclate was studied in six adult mixed-breed female cats and six adult mid-sized female dogs following a single intravenous administration of 5 mg/kg body weight. Doxycycline volume of the central compartment, area volume of distribution, volume of distribution at steady state, and total body clearance were significantly smaller in cats. The differences were attributed to more extensive binding of doxycycline to plasma protein including albumin in cats. The significant differences in the volume of distribution and total body clearance were not reflected in elimination half-lives under the conditions of this study (sample size, inhomogeneous population). Doxycycline elimination half-life was 4.56 +/- 0.68 (SEM) h for cats and 6.99 +/- 1.09 h for dogs. Dosage regimens recommended in the veterinary literature were evaluated by the computer program PETDR.  相似文献   

8.
This study reports the pharmacokinetics of oral amitriptyline and its active metabolite nortriptyline in Greyhound dogs. Five healthy Greyhound dogs were enrolled in a randomized crossover design. A single oral dose of amitriptyline hydrochloride (actual mean dose 8.1 per kg) was administered to fasted or fed dogs. Blood samples were collected at predetermined times from 0 to 24 h after administration, and plasma drug concentrations were measured by liquid chromatography with mass spectrometry. Noncompartmental pharmacokinetic analyses were performed. Two dogs in the fasted group vomited following amitriptyline administration and were excluded from analysis. The range of amitriptyline CMAX for the remaining fasted dogs (n = 3) was 22.8–64.5 ng/mL compared to 30.6–127 ng/mL for the fed dogs (n = 5). The range of the amitriptyline AUCINF for the three fasted dogs was 167–720 h·ng/mL compared to 287–1146 h·ng/mL for fed dogs. The relative bioavailability of amitriptyline in fasted dogs compared to fed dogs was 69–91% (n = 3). The exposure of the active metabolite nortriptyline was correlated to amitriptyline exposure (R2 = 0.84). Due to pharmacokinetic variability and the small number of dogs completing this study, further studies are needed assessing the impact of feeding on oral amitriptyline pharmacokinetics. Amitriptyline may be more likely to cause vomiting in fasted dogs.  相似文献   

9.
The purpose of the study was to compare the disposition of pharmacologic markers for cytochrome P-450 (CYP) metabolism, glomerular filtration rate (GFR), and extracellular (ECFV) and total body fluid volumes (TBFV) of Greyhounds and Beagles. Six healthy Greyhound and six healthy Beagle dogs were studied. Antipyrine, a marker for CYP metabolism and TBFV, and inulin, a marker for the GFR and ECFV, were administered i.v. Samples were collected at predetermined times and plasma was analyzed by validated high-pressure liquid chromatography (HPLC) methods. There were no differences in the disposition or pharmacokinetic parameters for inulin between the dog breeds. However, the clearance of antipyrine (mean = 8.33 mL/min/kg) in Greyhounds was significantly slower than Beagles (13.42 mL/min/kg, P = 0.004). The volume of distribution of antipyrine was significantly larger in Greyhounds (0.789 L/kg) than in Beagles (0.644 L/kg, P = 0.01). The half-life of antipyrine was significantly longer in Greyhounds (1.09 h) compared with Beagles (0.55 h, P = 0.002). The in vitro plasma protein binding of antipyrine was significantly less in Greyhounds (28%) compared with Beagles (40.3%, P = 0.008). Greyhounds exhibited significantly slower CYP metabolism, higher TBFV, and lower in vitro protein binding of antipyrine compared with Beagles. No differences in GFR or ECFV were found.  相似文献   

10.
Pharmacokinetics of oral terbinafine in horses and Greyhound dogs   总被引:1,自引:0,他引:1  
The objective of the study was to assess the pharmacokinetics of terbinafine administered orally to horses and Greyhound dogs. A secondary objective was to assess terbinafine metabolites. Six healthy horses and six healthy Greyhound dogs were included in the pharmacokinetic data. The targeted dose of terbinafine was 20 and 30 mg/kg for horses and dogs, respectively. Blood was collected at predetermined intervals for the quantification of terbinafine concentrations with liquid chromatography and mass spectrometry. The half-life (geometric mean) was 8.1 and 8.6 h for horses and Greyhounds, respectively. The mean maximum plasma concentration was 0.31 and 4.01 μg/mL for horses and Greyhounds, respectively. The area under the curve (to infinity) was 1.793 h·μg/mL for horses and 17.253 h·μg/mL for Greyhounds. Adverse effects observed in one study horse included pawing at the ground, curling lips, head shaking, anxiety and circling, but these resolved spontaneously within 30 min of onset. No adverse effects were noted in the dogs. Ions consistent with carboxyterbinafine, n-desmethylterbinafine, hydroxyterbinafine and desmethylhydroxyterbinafine were identified in horse and Greyhound plasma after terbinafine administration. Further studies are needed assessing the safety and efficacy of terbinafine in horses and dogs.  相似文献   

11.
Photodynamic therapy is a promising new treatment for local eradication of cancer. Little work has been done to define the pharmacokinetics of photodynamic drugs or the variability in drug disposition that may occur between different species and pathophysiological states of tissues. Pharmacokinetic studies of tin-etiopurpurin (SnET2), a lipophilic photosensitizer, were conducted on six Beagle dogs and six Sprague-Dawley rats. Blood was collected up to 24 h following drug administration for measurement of tin-etiopurpurin concentration. Dogs and rats were euthanatized 24 h post-administration and tissues were collected for drug analyses. The plasma drug concentrations were best described by a 2-compartment model (Ct = Ae-alpha t + Be-beta t). Median distribution and elimination half-lives were 0.24 and 0.34 h and 10.21 and 5.25 h for dogs and rats, respectively. The apparent volumes of distribution were 4.26 +/- 1.75 L/kg for dogs and 1.84 +/- 0.36 L/kg for rats. Systemic clearance was 7.56 +/- 2.45 ml/kg/min and 6.63 +/- 0.91 ml/kg/min for dogs and rats, respectively. Drug was detected in all tissues analyzed 24 h after drug administration. Drug was detected only sporadically in skin and muscle and was generally below the limit of detection of the assay. Where comparisons could be made, concentrations of SnET2 were significantly greater in all tissues except jejunum of rats compared to dogs 24 h after drug administration.  相似文献   

12.
13.
The purpose of this study was to compare the pharmacokinetics of two highly protein‐bound, lipophilic opioid drugs. Fentanyl (10 μg/kg) and buprenorphine (20 μg/kg) were administered intravenously (IV) to six healthy greyhound dogs (three males and three females). The doses were based on clinically administered doses for dogs. Plasma drug concentrations were determined using liquid chromatography with mass spectrometry, and noncompartmental pharmacokinetics were estimated with computer software. The volume of distribution (area) was larger for fentanyl (7.42 L/kg) compared to buprenorphine (3.54 L/kg). The plasma clearance of fentanyl (38.6 mL·min/kg) was faster than buprenorphine (10.3 mL·min/kg). The terminal half‐life of fentanyl (2.22 h) was shorter than buprenorphine (3.96 h). Despite similar physicochemical properties including octanol–water partition coefficient and pKa, the pharmacokinetics of fentanyl and buprenorphine were not similar. Both fentanyl (84%) and buprenorphine (95–98%) are considered highly protein bound, but the differences in protein binding may contribute to the lack of similarity of pharmacokinetics in healthy dogs.  相似文献   

14.
In steers, horses and dogs, the comparative pharmacokinetics of yohimbine were determined using model-independent analysis. The intravenous dose of yohimbine was 0.25 mg/kg of body weight in steers, 0.075 or 0.15 mg/kg in horses, and 0.4 mg/kg in dogs. The mean residence time (+/- SD) of yohimbine was 86.7 +/- 46.2 min in steers, 106.2 +/- 72.1 to 118.7 +/- 35.0 min in horses, and 163.6 +/- 49.7 min in dogs. The mean apparent volume of distribution of yohimbine at steady state was 4.9 +/- 1.4 L/kg for steers, 2.7 +/- 1.0 to 4.6 +/- 1.9 L/kg for horses, and 4.5 +/- 1.8 L/kg for dogs. The total body clearance of yohimbine was 69.6 +/- 35.1 mL/min/kg for steers, 34.0 +/- 19.4 to 39.6 +/- 16.6 mL/min/kg for horses, and 29.6 +/- 14.7 mL/min/kg for dogs. Between-species comparisons indicated that the mean area under the serum concentration versus time curve was significantly greater (P less than 0.05) in dogs than in horses. There were no significant differences (P greater than 0.05) between the means for the apparent volume of distribution, clearance, mean residence time, terminal rate constant, and area under the curve between horses given the two doses of yohimbine. The harmonic mean effective half-life (+/- pseudo standard deviation) of yohimbine was 46.7 +/- 24.4 min in steers, 52.8 +/- 27.8 to 76.1 +/- 23.1 min in horses, and 104.1 +/- 32.1 min in dogs. The data may explain why steers, horses, and dogs given certain sedatives and anesthetics do not relapse when aroused by an intravenous injection of yohimbine hydrochloride.  相似文献   

15.
Summary

Histological examination of 753 Beagle dogs showed renal foci of calcification in 27.9% of males and 21.5% of females. In contrast, stomach calcification was observed in 6.2% of males and 5.2% of females examined.

It is suggested that the focal calcification seen in both organs was possibly of dietary origin and may have been related to the phosphate content.  相似文献   

16.
Bald thigh syndrome (BTS) is a disease limited to Greyhound dogs. It is characterized clinically and grossly by bilateral hair loss on the lateral and caudal thighs. The cause of BTS is unknown but may be associated with hypothyroidism or hyperadrenocorticism. Samples of skin, thyroid glands, and adrenal glands from 43 Greyhound dogs with BTS were examined microscopically. Microscopic changes were characterized by dilatation of follicular infundibula, presence of catagen follicles and epidermal hyperplasia. Changes in the skin from these Greyhound dogs suggest an endocrinopathy as the cause; however, we were unable to confirm which one.  相似文献   

17.
The purpose of this study was to determine the pharmacokinetic and antinociceptive effects of an acetaminophen/codeine combination administered orally to six healthy greyhounds. Antinociception was assessed using an electronic von Frey (vF) device as a mechanical/pressure model. Acetaminophen was administered at a dose of 600 mg (14.4–23.1 mg/kg) and codeine phosphate at 90 mg (2.1–3.3 mg/kg) equivalent to 67.5 mg codeine base (1.6–2.5 mg/kg). The geometric mean maximum plasma concentrations of acetaminophen, codeine, and codeine‐6‐glucuronide were 7.95 μg/mL, 11.0 ng/mL, and 3819 ng/mL, respectively. Morphine concentrations were <1 ng/mL. The terminal half‐lives of acetaminophen, codeine, and codeine‐6‐glucuronide were 0.94, 1.71, and 3.12 h. There were no significant changes in vF thresholds, except at 12 h which decreased on average by 17% compared to baseline. The decrease in vF thresholds at 12 h could be due to aversion, hyperalgesia, or random variability. The lack of antinociception in this study could be due to a true lack of antinociception, lack of model sensitivity, or specificity. Further studies using different models (including clinical trials), different dog breeds, multiple dose regimens, and a range of dosages are needed prior to recommended use or concluding lack of efficacy for oral acetaminophen/codeine in dogs.  相似文献   

18.
《中国兽医学报》2017,(12):2364-2369
8只健康比格犬采用随机交叉试验设计,盐酸特比萘芬注射液按5 mg/kg单剂量静注,盐酸特比萘芬片按20mg/kg单剂量口服给药,洗脱期为2周。采用高效液相色谱法测定犬血浆中特比萘芬的浓度,以药动学分析软件WinNonlin5.2的非房室模型分析方法处理血药浓度-时间数据。结果显示,犬静注盐酸特比萘芬注射液的药动学参数分别为:Tmax(0.083±0.000)h,Cmax(3.334±0.185)mg/L,T1/2β(15.158±8.558)h,MRT(2.443±1.132)h,AUClast(1.803±0.374)h·mg/L,Vd(49 778.164±25 594.370)mL/kg,CLB(2 414.907±577.369)kg·mL/h。犬口服盐酸特比萘芬片的主要药动学参数为:Tmax(1.875±0.791)h,Cmax(0.324±0.126)mg/L,T1/2β(18.150±10.557)h,MRT(5.019±1.591)h,AUClast(1.094±0.588)h·mg/L,Vd(395 321.202±236 694.989)mL/kg,CLB(14 340.535±3 560.508)kg·mL/h,Flast(16.589±11.495)%,F0~∞(18.236±8.114)%。结果表明,特比萘芬片剂在犬体内吸收迅速,保留时间更长,消除更为缓慢,有长效抑菌效果。  相似文献   

19.
ObjectiveTo evaluate the pharmacokinetics of amitriptyline and its active metabolite nortriptyline after intravenous (IV) and oral amitriptyline administration in healthy dogs.Study designProspective randomized experiment.AnimalsFive healthy Greyhound dogs (three males and two females) aged 2–4 years and weighing 32.5–39.7 kg.MethodsAfter jugular vein catheterization, dogs were administered a single oral or IV dose of amitriptyline (4 mg kg−1). Blood samples were collected at predetermined time points from baseline (0 hours) to 32 hours after administration and plasma concentrations of amitriptyline and nortriptyline were measured by liquid chromatography triple quadrupole mass spectrometry. Non-compartmental pharmacokinetic analyses were performed.ResultsOrally administered amitriptyline was well tolerated, but adverse effects were noted after IV administration. The mean maximum plasma concentration (CMAX) of amitriptyline was 27.4 ng mL−1 at 1 hour and its mean terminal half-life was 4.33 hours following oral amitriptyline. Bioavailability of oral amitriptyline was 6%. The mean CMAX of nortriptyline was 14.4 ng mL−1 at 2.05 hours and its mean terminal half-life was 6.20 hours following oral amitriptyline.Conclusions and clinical relevanceAmitriptyline at 4 mg kg−1 administered orally produced low amitriptyline and nortriptyline plasma concentrations. This brings into question whether the currently recommended oral dose of amitriptyline (1–4 mg kg−1) is appropriate in dogs.  相似文献   

20.
Lesions of spontaneous subclinical disease in Beagle dogs   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号