首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The critical crop-weed competition period in a dry-seeded rice system is an important consideration in formulating weed management strategies. Field experiments were conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to determine the extent of yield loss in two different rice cultivars (PR 114 and PR 115) with different periods of weed interference. Twelve weed control timings were used to identify critical periods of weed competition in dry-seeded rice. PR 114, a long-duration rice cultivar (145 d) having slower initial growth than PR 115 (125 d), was more prone to yield losses. In both years, 100% yield loss was observed where weeds were not controlled throughout the season. In weed-free plots, the grain yield of PR 114 was 6.39–6.80 t ha−1, for PR 115, it was 6.49–6.87 t ha−1. Gompertz and logistic equations fitted to yield data in response to increasing periods of weed control and weed interference showed that, PR 114 had longer critical periods than PR 115. Critical weed-free periods to achieve 95% of weed-free yield for PR 114 was longer than for PR 115 by 31 days in 2012 and 26 days in 2013. Weed infestation also influenced the duration of critical periods. Higher weed pressure in 2012 than in 2013 increased the duration of the critical period of crop-weed competition in that year. The identification of critical crop-weed competition periods for different cultivars will facilitate improved decision-making regarding the timing of weed control and the adoption of cultivars having high weed-suppressing abilities. This will also contribute to the development of integrated weed management in dry-seeded rice systems.  相似文献   

2.
Water shortage in drought-prone rice-growing areas of the world is threatening conventional irrigated rice production systems, in which rice is transplanted into fields where standing water is maintained until harvest. Aerobic rice production systems, in which rice is grown as a direct-seeded upland crop without flooding, require less water than conventional systems, but the transition to aerobic rice systems is impeded by severe weed infestation. An environmentally friendly and less labor-intensive weed control method needs to be introduced to aerobic rice farmers. A study was conducted at the International Rice Research Institute in the 2003 wet season and 2004 dry season to evaluate the effects of genotype, seeding rate, seed priming and their interactions on vegetative growth, yield and weed suppression. Three contrasting aerobic rice genotypes differing in yield and weed-suppressive ability (WSA) were grown at three seeding rates (100, 300 and 500 viable seeds m−2) with or without seed priming under two weed management treatments (weed-free and weedy) in a split-plot design. In 2004, the overall weed pressure was higher than in 2003, and consequently treatment effects in this year were more distinct than in 2003. No significant interactions among the experimental factors were found for crop yield, weed biomass, leaf area index, tiller number and vegetative crop biomass. Raising seeding rate from 100 to 300 viable seeds m−2 resulted in a significant increase in yield and a decrease in weed biomass, whereas a further increase from 300 to 500 viable seeds m−2 did not result in a further improvement in yield and weed suppression. The stronger WSA of genotype Apo than that of genotypes IR60080-46A and IRAT 216 related to a stronger competitive ability of individual plants and a faster canopy closure (0.5–6 days earlier). The WSA of weakly competitive genotypes was partially compensated for by a higher seeding rate. Seed priming, which was only evaluated in 2003, accelerated emergence by 2 days and slightly enhanced early crop growth, but had no significant effect on yield and weed suppression. The present study suggests that combining a weed-suppressive genotype with an optimum seeding rate can serve as a tool to manage weeds.  相似文献   

3.
Dry-seeded rice has been introduced as an alternative to puddled hand-transplanted rice in the north Indian states of Punjab and Haryana. In dry-seeded rice, weed flora tends to be more diverse and weeds emerge in several flushes during the crop growth cycle and substantial yield reductions due to weed competition are quite common. The efficacy and compatibility of tank mixtures of different herbicides for the control of diverse weed flora in dry-seeded rice was evaluated in field experiments during the summer seasons of 2012 and 2013. The tank mixture of fenoxaprop with ethoxysulfuron improved the control of Echinochloa crus-galli and Echinochloa colona by 43–69% as compared to fenoxaprop alone while the tank-mix of azimsulfuron with fenoxaprop was antagonistic and reduced the control of Leptochloa chinensis by 86% as compared to fenoxaprop alone. Addition of azimsulfuron or ethoxysulfuron to bispyribac did not improve the control of grass weeds as compared to bispyribac alone. Weed control with the mixture of bispyribac and fenoxaprop varied over the two years. In 2012, bispyribac and fenoxaprop mixture was antagonistic for the control of Dactyloctenum aegyptium, Acrachne racemose, and L. chinensis but in 2013, there was no apparent antagonism and the addition of bispyribac to fenoxaprop reduced grass weed biomass as compared to fenoxaprop alone. In 2013, there was a strong negative correlation (r = −0.95, P < 0.001) between weed dry matter at 45 days after sowing and rice grain yield. According to the linear regression, rice crop is likely to produce no grain yield when weed dry matter exceeds 400 g m−2. Over the two seasons, fenoxaprop-ethoxysulfuron tank-mix produced similar grain yields (5.6–6.2 t ha−1) to the weed-free check (5.6–7.1 t ha−1). At the farmer fields, rice grain yield in the plots treated with pendimethalin followed by post-emergence bispyribac or a tank-mix of fenoxaprop + ethoxysulfuron ranged from 6.2 to 7.7 t ha−1 as compared to 5.3–5.6 t ha−1 in the plots treated with pendimethalin alone. The tank mixture of fenoxaprop with bispyribac needs further evaluation as this mixture has the potential to effectively control aerobic and aquatic grasses in dry-seeded rice. Single hand weeding prevented crop yield loss from weeds that escaped herbicide treatments only when it was performed within six weeks of sowing.  相似文献   

4.
《Journal of Crop Improvement》2013,27(1-2):173-189
Abstract

Shortage of labor and water are forcing farmers to explore the alternatives of transplanting. A field experiment was conducted at the experimental farm of International Rice Research Institute (IRRI), Philippines during the 2003 wet season and the 2004 dry season to (1) evaluate the effects of different crop-establishment methods and N management on yield and yield parameters of rice; (2) determine N-use efficiency and water-use efficiency under different methods of rice establishment; and (3) analyze the economics of different crop-establishment methods. Crop-establishment method did not influence grain yield during the wet or dry seasons, indicating the potential of the three variants of direct seeding as alternative methods of establishing lowland rice. Direct-seeded rice had shorter crop duration, required less water and therefore had higher water-use efficiency than the transplanting method. Crop establishment did not influence the various indices of nitrogen-utilization efficiency except partial factor productivity of N (PFPN) during the wet season. During the dry season, dry-seeded rice had the lowest recovery efficiency. In contrast, agronomic-use efficiency and recovery efficiency were significantly higher in the SPAD-based (soil plant analyses development) N management strategy during the dry season. PFPN was significantly higher in the SPAD-based N management strategy during the wet and dry seasons. The interaction effect of crop establishment and N management indicated that for smaller N input and higher efficiency of N usage, N requirement for direct-seeded rice should be based on SPAD N technique. The cost-and-return analysis showed that benefit-cost ratio was consistently higher in dry seeding rice than transplanted rice using a SPAD-based N management.  相似文献   

5.
Row spacing and weed control timing affect yield of aerobic rice   总被引:2,自引:0,他引:2  
Field experiments were conducted during the wet season of 2009 and dry season of 2010 to determine the effects of row spacing and timing of weed control on weed growth and yield of aerobic rice. Ten weed management treatments were used to identify critical periods of weed competition with aerobic rice grown in three different row spacings (15-cm, 30-cm, and as paired rows 10-20-10-cm). Dominant weed species during both growing seasons were Rottboellia cochinchinensis, Digitaria ciliaris, Echinochloa colona, and Eleusine indica. Rice grown in 30-cm rows had greater weed biomass and less grain yield than in 15-cm and 10-20-10-cm rows; weed growth and grain yields were similar between 15-cm and 10-20-10-cm rows. Rice yields in the wet season ranged from 170 kg ha−1 where weeds were not controlled throughout the crop duration to 2940 kg ha−1 in weed-free treatment, indicating a 94% yield loss with uncontrolled weed growth. Similarly in the dry season, plots with no weed control (140 kg ha−1) compared to weed-free plots (3640 kg ha−1) indicate a 96% yield loss with no weed control. Gompertz and logistic equations were fitted to yield data resulting from increasing durations of weed control and weed interference, respectively. Critical periods for weed control in the wet season, to obtain 95% of a weed-free yield, were estimated as between 18 and 52 days after sowing (DAS) for crops in rows at 15-cm, 20-51 DAS at 10-20-10-cm, and 15-58 DAS at 30-cm. These intervals in the dry season were 17-56 DAS for crops in rows at 15-cm and 17-60 DAS at 10-20-10-cm and 15-64 DAS at 30-cm. Durations of the critical periods in the wet season were 31 days at 10-20-10-cm, 34 days at 15-cm and 43 days at 30-cm, while in the dry season, these were 43 days at 10-20-10-cm, 39 days at 15-cm and 49 days at 30-cm. In both seasons, crops in the wider spacing (30-cm) were vulnerable to weed competition for the longest period. The information gained from this study suggests that the aerobic rice yields better in 15-cm rows and 10-20-10-cm arrangements than in 30-cm rows and there is very little benefit of weed control beyond 8 weeks after sowing.  相似文献   

6.
Large within-field variation in rice growth often causes production loss in broadcast-seeded (BC) rainfed lowland rice. The spatial variability of direct-seeded rainfed lowland rice was evaluated in 2004, 2005, and 2007 in on-station experiments at Ubon Ratchathani, northeast Thailand, in relation to soil water content and weed infestation, by adopting semivariogram and block kriging, including comparisons among BC with harrowing (BCH; no weeding), BC with no harrowing (BCNH; no weeding), and row-seeded (RS; interrow weeding once) fields. BCH and BCNH were also compared in 11 farmers’ fields in 2006 and 2007, to assess the effect of harrowing on rice growth and weed infestation. During most of the rice growing periods, flooded and non-flooded portions existed simultaneously in the fields, with different proportions among years and among seeding methods in the on-station experiment. BCH and BCNH rice had large within-field variation in seedling density, heading date, shoot dry matter, grain yield, harvest index, panicle density, and filled spikelet per panicle, as well as in weed infestation, measured by a quick visual estimation. Many of the measured variables (except mean soil water content in RS in 2007, seedling density in BCH in 2005 and 2007, shoot dry matter in BCH and BCNH in 2007, and panicle density in BCH in 2007) were spatially dependent (i.e., data from nearby locations were most similar) by geostatistical analysis. Analysis of correlations using the 420 data sets of BCH plots in 2005 and BCH, BCNH, and RS plots in 2007 revealed a positive correlation between soil water content and grain yield and negative correlations between weed infestation and soil water content and grain yield. Compared with BCH, in 2007 BCNH had much lower grain yield because of lower soil water content after establishment and more weed infestation. BCH had higher grain yield than BCNH in weedy fields in the farmers’ fields experiment. RS with interrow weeding resulted in a smaller coefficient of variation, smaller sill value, and higher grain yield than BCH, due to less weed infestation and a higher proportion of flooded water. These results indicated that reducing the spatial variability in rice growth requires careful field preparation, such as harrowing to level the soil surface and to reduce the uneven distribution of standing water and the variability in soil water content, combined with effective crop and weed management (i.e., harrowing and row-seeding). This is the first study that examined spatial variability in the growth of direct-seeded rice as a function of soil water content and weed infestation in a rainfed lowland environment.  相似文献   

7.
《Plant Production Science》2013,16(4):315-320
Abstract

Wet-seeded rice is a common method of sowing in Vietnam. Weeds, including weedy rice, however, are a major problem in this establishment method. A study was conducted in a farmer’s field to evaluate the effect of pretilachlor dose (0, 300, 600, and 900 g ai ha–1) on the management of weedy rice and other weeds in wet-seeded rice cultivation in the spring-summer, summer-autumn, and winter-spring seasons of 2012-13. The herbicide was applied 1 day after sowing. Weeds belonging to the grass, broadleaf, and sedge groups were effectively controlled by the lowest herbicide dose (300 g ha–1). Overall, weed control did not increase with increases in herbicide dose after 300 g ha–1, suggesting the optimum dose for pretilachlor in wet-seeded systems. The application of pretilachlor at 300 g ha–1 significantly reduced the number of weedy rice panicles (20 – 69%) and weedy rice biomass (15 – 26%). The highest pretilachlor dose (i.e., 900 g ha–1), however, was better than the lower doses in reducing the number of weedy rice panicles (47 – 80%) and weedy rice biomass (41 – 54%). The non-treated plots produced a rice grain yield of 210, 2000, and 1850 kg ha–1 in the spring-summer, summer-autumn, and winter-spring seasons, respectively. Compared with the non-treated plots, the lowest dose of pretilachlor improved grain yield. However, maximum yield was obtained by applying the highest dose of pretilachlor; 2690, 4490, and 5150 kg ha–1 in the spring-summer, summer-autumn, and winter-spring seasons, respectively. The results of our study suggest that a broad spectrum of weed flora can be easily managed by a lower dosage of pretilachlor in wet-seeded rice; however, the herbicide dose needs to be increased to 900 g ha–1 in order to decrease the weedy rice problem.  相似文献   

8.
Aerobic rice systems can substitute the conventional rice cultivation system in the wake of water shortage and energy crises. The major constraint in the success of aerobic rice is high weed infestation. Hence, we have discussed the weed flora, yield losses, herbicide-resistant weeds, need for integrated weed management, and approaches to manage weeds in aerobic rice systems. A review of several studies indicated that 90 weed species were competing with rice under aerobic systems, causing 23–100% reductions in grain yield. Weed control in aerobic rice gets difficult due to shifts in weed flora and herbicide resistance development in weeds. A wide increase in grain yield (15–307%) by implementing different weed control practices elaborates the scope of weed management in aerobic rice. Practices, such as soil solarization, sowing of competitive crop cultivars, stale seedbed preparation, mulch application, correct fertilization, and intercropping, were found to have particular significance for managing weeds in aerobic rice systems. Moreover, hand weeding and mechanical control were more effective when combined with other weed control methods. Herbicides, such as pendimethalin, 2,4-D, penoxsulam, ethoxysulfuron, bispyribac-sodium, triclopyr, imazosulfuron, bensulfuron, pretilachlor, and metsulfuron, were found most effective in aerobic rice systems. Keeping in view the severity of weed infestation in these systems and the evolution of herbicide resistance, reliance on a single control method is out of question. Hence, the approach of integrated weed management is the most appropriate for proper weed management and the subsequent success of rice cultivation using aerobic systems.  相似文献   

9.
Weeds are a major constraint to rice (Oryza spp.) production in West Africa. Superior weed competitive rice genotypes may reduce weed pressure and improve rice productivity. Two upland and two lowland experiments were conducted in southern Benin to examine genotypic variations in weed-suppressive ability and grain yield under weedy conditions, and to identify plant characteristics that could be used as selection criteria for improved weed competitiveness. A total of 19 genotypes, including Oryza sativa and Oryza glaberrima genotypes and interspecific hybrids developed from crossing O. sativa and O. glaberrima, were grown under weed-free and weedy conditions in an upland with supplemental irrigation and in a flooded lowland. In weedy plots, hand weeding was done once or not at all. Mean relative yield loss across all genotypes due to weed competition ranged from almost 0% to 61%. Large genotypic variations in weed biomass and grain yield under weedy conditions were found. Visual growth vigor at 42 and 63 days after sowing (DAS) under weed-free conditions significantly correlated with weed biomass at maturity in both upland and lowland experiments (R2 = 0.26–0.48). Where weed pressure was low to moderate, with mean relative yield loss less than 23%, the multiple regression models using grain yield and plant height at maturity or only grain yield measured under weed-free conditions as independent variables could explain 66–88% of the genotypic variation in grain yield under weedy conditions. At higher weed pressure (mean relative yield loss: 61%), as observed in one of the upland experiments, biomass accumulation of rice at 42 days after sowing was associated with higher grain yield under weedy conditions. Biomass accumulation also significantly correlated with visual growth vigor at the same sampling dates. Therefore, we conclude that grain yield, plant height at maturity and visual growth vigor at 42–63 DAS under weed-free conditions appear to be useful selection criteria for developing superior weed competitive rice genotypes.  相似文献   

10.
For minimizing yield losses due to infestation of a weed, it is essential to know about its critical period of competition in a specific crop. The yield response of maize (Zea mays L.) to different competition periods (0, 35, 42, 49 and 56 days after crop emergence (DAE), and competition throughout growing season) of the invasive weed Parthenium hysterophorus L. was tested during autumn seasons of two consecutive years 2012 and 2013. Increasing parthenium competition period increased its dry weight up to 448% and relative competition index up to 52%. The corresponding increases in the uptake of N (up to 581%), P (up to 700%) and K (up to 669%) were also recorded. Parthenium weed competition period of 35 DAE decreased grain yield and harvest index of maize. However, number of grains and grain weight per cob, and 100-grain weight of maize were reduced at parthenium weed competition period beyond 42 and 56 DAE, respectively. Maize grain yield losses varied between 21 and 53% with parthenium competition period ranging from 35 DAE to full growing season. Maximum N, P, and K uptake by parthenium was 18.4, 2.4 and 17.7 kg ha−1, respectively. A three parameter logistic model was fitted to yield data in response to increasing durations of weed infestation. The critical timing of parthenium weed removal to avoid 5% and 10% maize grain yield loss was 8 and 17, and 13 and 23 DAE during year 2012 and 2013, respectively. Relatively shorter critical period of parthenium weed competition in maize crop suggested this weed to be highly allelopathic in addition to its competitive behavior.  相似文献   

11.
The implications of adopting alternative seeding methods for rice and wheat establishment were examined at three geographically separate sites in the rice-wheat system of the Indo-Gangetic plains, across northern India. Rice yields in cultivated plots, established by either wet or dry seeding methods, were evaluated in comparison to yields from zero-tillage plots and under conventional transplanting methods. In the same trials, the effects of crop establishment methods in wheat were assessed both on wheat yields and rice yields. Rice crop establishment methods markedly influenced the emerging weed flora and attainable yields were measured in relation to intensity of weed management. Over four years, average rice grain yields in the absence of weed competition were greatest (6.56 t ha−1) under wet seeding (sowing pre-germinated rice seed on puddled soil), and similar to those from transplanted rice (6.17 t ha−1) into puddled soil, and dry seeded rice after dry soil tillage (6.15 t ha−1). Lowest yields were observed from dry seeded rice sown without tillage (5.44 t ha−1). Rice yield losses due to uncontrolled weed growth were least in transplanted rice (12%) but otherwise large (c. 85%) where rice had been sown to dry cultivated fields or to puddled soil, rising to 98% in dry seeded rice sown without soil tillage. Weed competition reduced multiple rice yield components, and weed biomass in wet seeded rice was six-fold greater that in rice transplanted into puddled soil and twice as much again in dry seeded rice sown either after dry tillage or without tillage. Wheat grain yields were significantly higher from crops sown into tilled soil (3.89 t ha−1) than those sown without tillage (3.51 t ha−1), and also were elevated (5% on average) where the soil had been dry cultivated in preparation for the previous rice crops rather than puddled. The method of wheat cultivation did not influence rice yield. Soil infiltration rates in the wheat season were least where the land had been puddled for rice (1.52 mm h−1), and greater where the soil had been dry-tilled (2.63 mm h−1) and greatest after zero-tillage (3.54 mm h−1).These studies demonstrated at research managed sites across a wide geographic area, and on farmers’ fields, that yields of dry seeded rice sown after dry cultivation of soil were broadly comparable with those of transplanted rice, providing weed competition was absent. These results support the proposition that direct seeding of rice could provide an alternative to the conventional practice of transplanting, and help address rising costs and threats to sustainability in the rice-wheat rotation. Further, analysis of patterns of long-term rainfall data indicated that farmers reliant on monsoon rainfall could prepare fields for dry direct seeded rice some 30 days before they could prepare fields for either transplanting or seeding with pre-germinated seed. Dry, direct seeding of rice contributes a valuable component of an adaptive strategy to address monsoonal variability that also may advance the time of wheat establishment and yield. Whilst the results illustrate the robustness, feasibility and significant potential of direct seeded rice, they also highlight the critical nature of effective weed control in successful implementation of direct seeding systems for rice.  相似文献   

12.
不同耕作和种植方式对稻田杂草及水稻产量的影响   总被引:1,自引:0,他引:1  
采用田间试验,研究了7种不同水稻耕作和种植方式[水田翻耕移栽(puddling transplanting,PT)、免耕移栽(no tillage transplanting,NTT)、水田翻耕滚筒湿播(puddling drum wet seeding,PDWS)、免耕滚筒湿播(no tillage drum wet seeding,NTDWS)、传统耕作旱穴播(conventional tillage dry drilling,CTDD)、沟垄灌溉旱穴播(furrow irrigated raised beds system dry drilling,FIRBSDD)和免耕旱穴播(no-tillage dry-drilling,NTDD)对稻田杂草和水稻产量的影响。结果表明,PT处理下水稻产量最高,杂草干物质量最低;与移栽相比,直播(direct seeded rice,DSR),包括旱直播和湿直播,杂草生长能力最强,且不管有无杂草均降低了水稻产量;直播处理因杂草使水稻减产91.4%~99.0%,而PT和NTT处理分别减产16.0%和42.0%;香附子、龙爪茅、长穗苋、珠子草和假海马齿等杂草种类在DSR处理中大量出现,但在PT处理中未出现。大田示范试验结果表明,普通水稻品种(HKR-47和IR-64)在DSR处理较PT处理减产达15.8%,但优质水稻品种(Sharbati和PB-1)在两处理间无明显差异。当前劳动力紧缺,人工插秧需要大量劳力,因此亟需开发好氧栽培(如免耕直播和机插)模式下的适宜水稻品种及其相关配套农业机械及技术。  相似文献   

13.
Weeds cause substantive yield losses in rainfed rice, particularly direct-seeded rice (DSR). Two field experiments were conducted in 2005 in north-east Thailand to examine the effects of cutting date and timing of fertilizer application on suppressed weed, growth and yield of DSR. Treatments consisted of two fertilizer applications to the main plots (top-dressing at the date of cutting and 15 days after cutting; DAC) and four cutting dates of the sub-plots. Rice and weed cutting was performed at 30, 45, 60 and 75 days after seeding (DAS), compared with an untreated control. Cutting resulted in a higher growth rate and improved grain yield of rice compared to the untreated control. Weed cutting at 60 DAS resulted in the greatest leaf area index, which contributed to the maximum number of tiller as well as maximum plant dry mass when observed at 30 DAC. Lower densities and dry weights of weeds at 30 DAC were observed when cutting was done 60 DAS, resulting in a higher grain yield than the other cutting dates. Timing of fertilizer application had no significant effect on the density and dry weight of grasses and broad-leaved weeds, but did have a significant affected on, resulting in the lowest density of sedges at 45 DAC was observed with fertilizer applied at cutting date. Rice grain yield was higher with top-dressing of fertilizer at 15 DAC than with fertilizer applied at cutting date. The cutting treatments resulted in higher net incomes than the untreated control. These results indicate that rice and weed cutting at an appropriate growth stage is an alternative method to chemical weed control for DSR in rainfed riceland.  相似文献   

14.
In India, dry-seeded rice (DSR) production systems are rapidly replacing conventional rice production systems due to various advantages. DSR systems can be managed under zero-till (ZT) conditions or after a preparatory tillage, often referred to as conventional tillage systems (CONT). Although previous reports indicate the contribution of tillage to weed suppression, the effect of one-time preparatory tillage in a DSR system could vary depending on the dominant weeds in the system, vertical seed distribution and the weed seed dynamics. A study was conducted to test the efficacy of ZT and CONT and their interaction with herbicide treatments on the weed population dynamics and rice grain yield in 2010 and 2011. Tillage systems did not affect weed emergence, weed biomass, tiller production and crop yield. However, herbicide treatments varied in their efficacy on individual weeds. Hand-weeding treatments and pendimethalin combined with hand weeding did not effectively control Cyperus rotundus L. and Panicum maximum Jacq. (a perennial grass weed with underground parts). The herbicide combination of metsulfuron and chlorimuron was effective in controlling C. rotundus but not grass weeds. This indicates the need for sequential applications of herbicides for grass weed control or integration of hand weeding to achieve broad-spectrum weed control. Apart from hand weeding (three times), treatment with penoxsulam–cyhalofop and pendimethalin followed by (fb) hand weeding resulted in low weed density, high tiller production and grain yield. The study clearly indicates that tillage does not always lead to weed suppression compared with ZT, and herbicides must be chosen based on the dominant weeds in a system. The results of this study are pertinent as herbicide-resistant weeds are rapidly evolving under continuous herbicide selection pressure, which warrants studies on enhancing productivity through low-input, environmentally friendly and sustainable production technology.  相似文献   

15.
《Field Crops Research》1998,57(1):57-69
A recent breakthrough in generating fertile progeny from Oryza sativa×O. glaberrima crosses gives rice breeders access to a broader range of germplasm. Interspecific crosses might provide new solutions to the low productivity of upland rice systems prone to weed competition. Two field and one pot experiments conducted during 1995 and 1996 served to characterize growth and yield potential of CG14 (O. glaberrima), WAB56-104 (O. sativa) and their progeny. During the 1995 wet season and the 1996 dry and wet seasons, the lines were seeded in a well-drained upland field in Ivory Coast with supplemental sprinkler irrigation. A randomized complete-block design with three replications was used, with cultivar and nitrogen levels as sub-plots. Specific leaf area (SLA), leaf area index (LAI), leaf chlorophyll content (SPAD method) and tiller number were measured at 2-week intervals until flowering. Grain yield and yield components were measured at maturity. In all environments, CG14 produced two to three times the LAI and tiller numbers as WAB56-104. This was associated with a high SLA and low leaf chlorophyll content. Grain yields of CG14 did not respond to N inputs, although the sink potential did. The difference was mainly caused by grain shattering. The progenies had intermediate LAI, SLA and leaf chlorophyll content, but their grain yields, tiller numbers and resistance to lodging and grain shattering were similar to WAB56-104. Across lines, LAI and SLA were significantly correlated. A paddy field experiment confirmed the relationship between LAI and SLA for a wider range of rice cultivars and interspecific progenies. A pot experiment demonstrated that leaf net CO2 assimilation rates (Amax) followed a common linear function of areal leaf chlorophyll content across cultivars. The main common cause of differential LAI and Amax appeared to have been genotypic patterns of SLA, which might be an important determinant of growth vigor and competitiveness with weeds. The possibility is discussed of combining, in a single line, high SLA during vegetative growth (for weed competitiveness) with low SLA during the reproductive growth phase (for high yield potential), to produce an efficient plant type for low-management conditions.  相似文献   

16.
In order to assess direct seeding of rice technology to cope with future agricultural labor shortage in Cambodia, agronomic experiments were conducted in 2005 and 2006 to compare direct seeding with transplanting under three water conditions (non-flooded, shallow flooded, and deep flooded conditions) with/without weed control by herbicides (bentazone and cyhalofop-butyl) for two Cambodian rice varieties (shorter stature and early maturity Sen Pidao, taller stature and longer maturity Phka Rumduol). Average rice yield in 2 years was lower in direct seeding (341 g m−2) than transplanting (404 g m−2), but interaction components with year, varieties, water conditions, and weed management were significant, and the attained maximum yield of direct seeding (510 and 464 g m−2 for Phka Rumduol variety in shallow flooded condition with weeding in 2005 and 2006, respectively) was similar to that of transplanting. Plant length and dry weight of rice were reduced in non-flooded and deep flooded conditions compared with shallow flooded condition, and grain yield was the highest in shallow flooded condition. Yield advantage of Phka Rumduol over Sen Pidao increased under direct seeding, particularly under non-flooded conditions in 2005 because weed infestation was more suppressed in Phka Rumduol even without weeding. Increase in 100 g m−2 of weed infestation prior to heading (dry weight basis) reduced about 20% of attainable yield with weed control. This study identified importance of stature and growth duration of rice varieties and presence of standing water as well as the weed control, in order to develop and extend direct seeding in the Cambodia.  相似文献   

17.
The effects of nitrogen fertilizer treatment and source (prilled urea, urea supergranule, fresh azolla, rice straw or sesbania or rice straw compost and their combinations) on grain quality were studied in the 1987 crops of variety IR64 at IRRI. Although fertilizer application improved grain yield, it improved protein content only in the case of urea supergranule, azolla and rice straw. Lysine contents of brown rice protein were similar in samples with no N fertilizer and those with the highest protein content in both seasons. Fertilizer treatment regardless of source tended to decrease weight and increase translucency of brown rice in both seasons. Effects on other grain properties were not consistent in both seasons. Season affected more grain properties than fertilizer treatment did, particularly translucency which was higher in the dry season than in the wet season.  相似文献   

18.
《Field Crops Research》2007,102(1):9-21
We evaluated the genotypic differences in grain yield of 14 rice (Oryza sativa L.) genotypes with different phenology under four growing conditions: transplanting (TP) or direct-seeding (DS) in a toposequentially lower (with favorable water conditions) or upper (drought at around flowering stage) field at Ubon Ratchathani, northeastern Thailand. Thirteen of the genotypes – five early-maturing, four intermediate, and four late – had been bred for rainfed lowlands in northern and northeastern Thailand. IR24, a semi-dwarf, high-yielding, and early-maturing genotype bred for irrigated lowlands, was included for comparison. Genotypic differences in grain yield were significant in a combined analysis of all 4 growing conditions, and both high sink size (spikelet number per area) and high ripened grain percentage were associated with high yield. IR24 did not out-yield the rainfed-lowland genotypes, and its yield was particularly low in DS, owing to poor shoot dry matter production and low spikelet number per panicle. In the lower field, the interaction between cultivation method and genotype was also significant. In the lower field, late maturity was more strongly related to high shoot dry weight at maturity in TP than in DS; some of the early- to intermediate-maturing genotypes in DS produced shoot dry weights at maturity that were comparable to those of the late-maturing genotypes. High shoot dry matter production and large spikelet number per panicle were associated with high grain yield in DS genotypes in the lower field, whereas in TP genotypes with large numbers of panicles were required for high grain yield. Although the field location–genotype interaction and the field location–cultivation method–genotype interaction were not significant, regression analysis showed that late-maturing genotypes yielded less than earlier maturing genotypes, owing to the smaller ripened grain percentage resulting from late-season drought, in the upper field but not in the lower field. The presence of a trade-off between number of ripened grains and grain size in the lower field indicated the possibility of increasing the yield in rainfed-lowland genotypes by increasing assimilation capacity during grain filling. Phenology is important in the development of higher-yielding genotypes for different cultivation methods and different toposequential positions.  相似文献   

19.
In rice, the traditional system of transplanting gives the crop a 14 to 21-day growth advantage over the weeds [1]. The transplanting also enables rice to capture space earlier. This is because the young rice plants have leverage over germinating weeds due to shading and earlier establishment of root system. The immediate flooding after transplanting limits the establishment of many weeds [2]. Similarly, in direct seeded method, the use of high seed rates could reduce weed infestation to a lar…  相似文献   

20.
Well‐established stands of three ecotypes of Arachis pintoi (CIAT 17434, 18744 and 18748) were harvested from replicated plots (three blocks, each containing three plots for each ecotype) during the two dominant seasons (dry and wet) of the low altitude, humid tropics of Costa Rica. Each plot was further divided into six subplots so that, within each season, samples corresponding to 4, 6, 8, 10, 12 or 14 weeks of regrowth could be collected. For each harvest, dry matter (DM) yield of the leaf, stem and whole plant, and the leaf:stem ratio, were recorded. Samples of the whole plant were analysed for crude protein (CP), rumen‐degradable (RDP) and rumen‐undegradable protein (RUP) concentrations. DM yield of the leaf, stem and whole plant increased with advancing period of regrowth but the effects of period of regrowth varied somewhat among ecotypes and across seasons. Generally, DM yield was greater during the wet than during the dry season. The greatest difference between ecotypes for stem and total DM yields was evident during the dry season. In general, DM contents were low in the whole plant, leaf and stem samples (<220 g kg?1) and increased with increasing period of regrowth. Increases in leaf:stem ratio were most dramatic during the dry season with greater periods of regrowth, although the ratio was fairly constant during the wet season. Whole‐plant CP concentration was relatively high after short periods of regrowth (up to 279 g kg?1 DM) but declined with longer periods of regrowth; the relative decline was much greater during the dry season. The RDP concentration was relatively constant during the wet season (mean 115 g kg?1 DM), but declined with longer periods of regrowth during the dry season (range 194–111 g kg?1 DM). In general, the concentrations of RDP, on a CP basis, were greater during the dry season and ranged from 590 to 700 g kg?1 CP. Season, ecotype and period of regrowth all exerted an effect on RUP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号