首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to characterize the physiological and morphological traits that are associated with adaptation to unflooded soil conditions in rice. Four indica rice cultivars (Puluik Arang, Badari Dhan, Shwe Nang Gyi, and Ratul), which were previously identified as highly or less adaptable to unflooded soil conditions, were grown under flooded and unflooded (soil water potential; -0.10 MPa) soil conditions. Water uptake was measured every day for three weeks, and then the leaf water potential, the stomatal conductance, the dry matter weight, shoot and root morphological traits were measured. Puluik Arang and Badari Dhan exhibited greater leaf area expansion and higher maintenance of root development under the unflooded condition than that by other cultivars. The leaf water potential and stomatal conductance of fully expanded highest leaf in Puluik Arang and Badari Dhan were not affected by unflooded soil regime. Leaf area and root morphological traits were significantly correlated with water uptake regardless of soil moisture regimes. These results suggested that Puluik Arang and Badari Dhan exhibited great water uptake capacity through physiological and morphological adaptation of shoot and root traits to unflooded condition, resulting in great biomass productivity under the condition.  相似文献   

2.
《Plant Production Science》2013,16(3):183-190
Abstract

We investigated whether drought resistant rice cultivars exhibit higher dry-matter production under wet and dry compacted soil conditions in the vegetative stage and determined the dominant factors governing resistance to soil compaction. Three rice cultivars, a drought-sensitive Nipponbare, and drought-resistant Senshou and Dular, were grown in pots at four soil bulk densities (SBD) ranging from 1300 to 1600 dry soil kg m?3. Root and shoot dry matter productions was slightly smaller in Nipponbare over the 29 days after sowing under irrigated conditions than in the other cultivars at all SBDs. Senshou and Dular also maintained a higher dry matter production, both in relative and absolute values, than Nipponbare under the condition of withheld irrigation from days 29 — 39 after sowing. The higher stomatal conductance and leaf water potential of these two cultivars were supported by a larger root system which was mostly accompanied by lower top-root ratios in the irrigated and compacted soils. The higher plant growth rate under the non-irrigated condition might have been a result of both the higher water absorption rate and water use efficiency, which in turn were supported by the larger root biomass. We conclude that the ability of rice to rapidly develop a root system in the early vegetative phase under compacted soils facilitates plant production under subsequent soil desiccated conditions.  相似文献   

3.
《Plant Production Science》2013,16(3):306-315
Abstract

The effect of a long term of soil compaction on dry matter production (DMP) and water use in rice cultivated under limited water supply during the reproductive stage is unknown. Our objectives were to determine which of the transpiration (Tr) or water use efficiency (WUE) is dominant in determining DMP under compacted and desiccated soil conditions. When irrigation in the period around the reproductive stage was terminated in artificially compacted and non-compacted fields, the rate of suppression of DMP by soil compaction was similar in the three rice cultivars, but DMP was higher in drought resistant cultivars having deep root density at the heading stage. Six cultivars were grown in pots of 1.0 m in depth containing the soils of three levels of soil bulk density (SBD). Water supply was restricted by keeping the water table in the pot deep without irrigation during the reproductive stage. DMP and Tr in all cultivars decreased with increasing SBD, and a close relationship was seen between DMP and Tr. WUE was thus a fairly stable factor for all cultivars examined. Tr was positively correlated with root length density and was relatively maintained at a high SBD in drought-resistant cultivars having a higher root length density. We concluded that water shortage under compacted soil conditions during reproductive stage suppressed the DMP, and DMP suppression accompanied a reduction of Tr due to poor root development rather than the reduction of WUE. In the drought-resistant cultivars reduction of DMP was relatively small due to their highly developed root systems that allowed high water absorption from the deep layers in the compacted soil.  相似文献   

4.
《Plant Production Science》2013,16(3):267-276
Abstract

Soil moisture distributions in rainfed lowland rice environments are largely determined by the position in the toposequence. In this study, we developed an experimental sloping bed that can simulate the soil hydrological conditions in sloping rainfed lowland rice environments to examine if the expression of promoted root system development in relation to soil moisture availability along the soil profile may maximize water uptake and dry matter production under drought. The gradient of available water along both the surface soil layer and the vertical soil profile was successfully created by manipulating ground water levels in the experimental sloping bed indicating the practical effectiveness of this experimental system. Then, two contrasting genotypes, IRAT109 (upland rice adapted japonica) and KDML105 (lowland adapted indica) were grown for plasticity evaluation. Dry matter production was maintained even at a higher position in the toposequence in IRAT109, but decreased in KDML105. Such maintenance of dry matter production in IRAT109 was attributed to its greater ability to increase root length density in a deeper soil layer, where more soil moisture is available. In contrast, KDML105 maintained root length density in the upper soil layer, and could not utilize the soil moisture available in the deeper soil layer. These results imply that the genotype that expressed root plasticity with root system developing in the soil portion where more soil moisture was available showed greater dry matter production than the genotype that showed root plasticity in the soil layer where soil moisture was less available.  相似文献   

5.
《Plant Production Science》2013,16(3):335-343
Abstract

Developmental plasticity in lateral roots may be one of the key traits for the growth of rice plants under soil moisture fluctuations. We aimed to examine responses in seminal root system development to changing soil moisture for diverse rice cultivars. Special attention was paid to the two different types of lateral roots ; the generally long, thick L type capable of branching into higher orders, and the non-branching S type. Plants were grown in half-split polyvinyl chloride tubes fixed with transparent acrylic plate for root observation under glasshouse conditions. When plants were grown first under drought conditions, then rewatered, the seminal root system development in terms of dry weight and total length was promoted as compared with plants grown under continuously well-watered conditions in IR AT 109 and Dular, drought tolerant cultivars. Promoted production of L type lateral roots mainly contributed to the development of the longer seminal root system. Plants exposed to soil submergence before they were grown under drought conditions did not show such promoted responses in these two cultivars. However, in KDML 105, a drought tolerant cultivar, the production of especially L type laterals was substantially promoted under drought and rewatered conditions. Honenwase was characterized by the shallow root system and great reduction in root system length when soil moisture becomes limited. These facts show that genotypic variations exist in the plastic response of rice seminal root system and that the L type lateral root plays a key role in manifestation of this plasticity.  相似文献   

6.
《Plant Production Science》2013,16(4):347-350
Abstract

Our previous study revealed that upland cultivars of New Rice for Africa (NERICAs) exhibited superior biomass production and N uptake compared with selected Japanese cultivars under upland conditions. The objective of this study was to examine whether the N uptake ability of upland NERICAs is attributable to their transpiration and exudation rates. Two NERICA cultivars (NERICA 1 and NERICA 5), two Japanese upland cultivars (Toyohatamochi and Yumenohatamochi), and a Japanese lowland cultivar Hitomebore were grown under rainfed upland conditions at two N levels. The NERICAs exceeded Japanese cultivars in the increment of aboveground dry weight and N content during the ripening stage. The transpiration rate and exudation rate of NERICAs tended to be higher than those of Japanese cultivars during the ripening stage. These results suggest that NERICAs are capable of maintaining higher water uptake ability during the ripening stage, leading to greater N uptake and biomass production at maturity.  相似文献   

7.
高产条件下不同小麦品种耗水特性及籽粒产量的差异   总被引:2,自引:0,他引:2  
为给高产条件下小麦生产提供合理的节水灌溉方案,以山农15和烟农21为材料,设置3个水分(0~140 cm土层平均相对含水量)处理[W0:拔节(60%)+开花(55%);W1:拔节(75%)+开花(65%);W2:拔节(75%)+开花(75%)],研究了不同小麦品种耗水特性、籽粒产量及水分利用效率的差异及对水分供应的响应。结果表明,两品种在W1处理下灌溉水利用效率最高;W2处理获得最高的籽粒产量和水分利用效率;在W1和W2条件下,山农15籽粒产量和水分利用效率显著高于烟农21。山农15各水分处理的总耗水量显著高于烟农21。在W0和W1条件下,山农15播前土壤贮水利用量和比例显著高于烟农21,而生育期降水利用比例低,灌溉水利用量无显著差异;在W2条件下,山农15播前土壤贮水利用量高于烟农21,生育期降水利用比例无显著差异,灌溉水利用量和比例高。在W0和W1条件下,山农15对20~60、60~100、140~200 cm土层的播前土壤贮水利用量均高于烟农21,说明山农15利用中下层播前土壤贮水的能力高。在本试验条件下,山农15为高产和高水分利用效率品种,两个品种均以W2为兼顾高产和高水分利用效率的最佳水分处理。  相似文献   

8.
《Plant Production Science》2013,16(4):454-460
Abstract

Pearl millet is better adapted to hot and semi-arid conditions than most other major cereals. The objective of this study was to compare the deep water uptake ability and water use efficiency (WUE) of pearl millet among millet species. First, the WUE of six millet species was evaluated in pots under waterlogging, well-watered (control), and drought conditions. Secondly, the water uptake from deep soil layers by pearl millet and barnyard millet, which showed the highest drought and waterlogging tolerance, respectively, was compared in long tubes which consisted of three parts (two loose soil layers separated by a hardpan and a Vaseline layer). Soil moisture was adjusted to well-watered and drought conditions in the upper (topsoil) layer, while the lower (deep) layer was always kept wet. WUE was significantly reduced in all millet species by waterlogging but not by drought. The ratio of WUE to the control condition indicated that pearl millet had the highest and lowest resistances to drought and waterlogging conditions, respectively, while barnyard millet was the most stable under both conditions. The deuterium concentration in xylem sap water, relative water uptake from deep soil layers, and water uptake efficiency of deep roots were significantly increased in barnyard millet but not in pearl millet by drought in topsoil layers. In conclusion, the drought resistance of pearl millet is explained by higher WUE but not by increased water uptake efficiency in deep soil layers as compared to barnyard millet, another drought-resistant millet species.  相似文献   

9.
Abstract

The objective of this study was to identify rice cultivars with high emergence ability under low soil-moisture conditions using a large number of rice cultivars, and to clarify the differences between the rates of emergence in lowland and upland, white- and red-kerneled, and non-glutinous and glutinous cultivars. First, 30 cultivars with a high emergence rate at 14 days after sowing (DAS) were selected at a soil water potential of -1.17 to -0.89 MPa from 382 cultivars through fourscreening experiments. In these experiments, the emergence rate was significantly higher in the upland cultivars than in the lowland cultivars. The red-kerneled cultivars also had a significantly higher emergence rate than the white-kerneled cultivars. However, no difference in emergence rate was observed between the non-glutinous and glutinous cultivars. Second, the emergence rates of various cultivars were examined at a soil water potential of -1.62, -1.23, and -1.07 MPa. The higher the soil water potential, the higher the emergence rate at 28 DAS and the shorter the time to the emergence. The order of cultivars in their emergence rate at 13 DAS at -1.07 MPa was similar to that at 28 DAS at -1.62 MPa. Therefore, the dataat 13 DAS at -1.07 MPa were used to compare the selected 30 cultivars for their emergence ability under low soil-moisture conditions. Moulla Topa showed the highest emergence rate (78.1%) and Gaiya Rate Bhasunamathe the shortest time to 50% emergence (11.1 d) under these conditions.  相似文献   

10.
《Plant Production Science》2013,16(3):381-389
Abstract

Scarcity of water and N fertilizer are major constraints to rice production, particularly in developing countries where rainfed upland condition dominates. Improvement of genetic adaptability to inadequate water and N fertilizer is one option to maintain productivity in these regions. NERICAs are expected to yield higher under low input conditions, but growth and yield responses of the cultivars to different ecosystems and N levels remain unknown. The objectives of this study were to characterize the growth and yield performance of NERICAs, in comparison with selected Japanese rice cultivars. The two NERICAs (NERICA 1 and NERICA 5), two Japanese upland cultivars (Toyohatamochi and Yumenohatamochi), and a Japanese lowland cultivar Hitomebore were grown under two ecosystems (irrigated lowland (IL) and rainfed upland (RU)) with two N levels (high (H) and low (L)) for two years. The cultivar difference in the aboveground dry weight and grain yield was the largest in the in RU × L plot, where the values of NERICAs were similar to those in the other plots, but the values of other cultivars were substantially reduced. Regardless of cultivar, N contents of the plants at maturity correlated significantly with the aboveground dry weight at maturity, spikelet number and grain yield per area. These results indicate that NERICAs, compared with the selected Japanese upland cultivars that were bred for drought tolerance, have a higher ability to absorb N under upland conditions, which may contribute to higher biomass production and sink formation, resulting in increased gain yield.  相似文献   

11.
Two winter wheat (Triticum aestivum L.) cultivars, namely Jimai22 (JM22) and Zhouyuan9369 (ZY9369), were used to study the effects of a new irrigation policy, supplemental irrigation (SI) based on soil moisture levels, photosynthesis, dry matter accumulation, and remobilization from 2009 to 2011 in Northern China. Two SI treatments were designed based on relative soil moisture contents in the 0–140 cm soil layer: (1) the target soil relative water contents were 75% of field capacity (FC) at jointing and 65% of FC at anthesis (W1), 75% and 70% (W2) in 2009–2010, and (2) the target soil relative water contents were 75% at jointing and 75% at anthesis (W1′), 75% and 80% (W2′) in 2010–2011. Rain-fed treatment (W0) was used as control. Results showed that SI significantly improved the biomass, grain yield and water use efficiency (WUE) of both wheat cultivars. The biomass and grain yield of W1 and W1’ treatments were higher than those of others. The net photosynthetic rate, the actual photochemical efficiency of flag leaf, the accumulation of dry matter, and its remobilization from the vegetative parts to the grains after anthesis in W1 and W1’ treatments were significantly higher than in the other treatments. By contrast, the WUE and irrigation efficiency of W2 and W2’ were significantly lower than those of W1 and W1’. Under the experimental conditions, ‘JM22’ showed higher photosynthetic rate in the last stage of grain filling, more spike number per ha, more kernels per spike, higher 1000-kernels weight and eventually higher WUE than ‘ZY9369’.  相似文献   

12.
《Plant Production Science》2013,16(4):307-317
Abstract

Root traits that can contribute to drought resistance have not been clearly indentified. We examined the role of root system development in enhancing water uptake and contribution to dry matter production by using the root box-pinboard method, with which quantitative assessment of root system development and the water uptake of root are possible. Chromosome segment substitution lines CSSL45 and CSSL50, and the recurrent parent Nipponbare were grown under continuously waterlogged conditions (control), and various intensities of water deficit in root boxes. There was no significant difference among the genotypes in shoot growth and root development, while CSSL45 and CSSL50 showed greater shoot dry weight than Nipponbare under water deficit conditions. This was due to their abilities to promote root system development as compared with Nipponbare, which facilitated greater water extraction than Nipponbare, especially under the mild water deficit condition of 20–25% w/w soil moisture contents. Furthermore, the increased root length density did not exceed the estimated critical value for water uptake, which indicates that plastic root system development was functionally effective and efficient for the enhancement of water uptake under mild water deficit conditions.  相似文献   

13.
为探明聚丙烯酰胺(PAM)施用后对燕麦不同生育阶段水分利用的影响,在长城沿线旱作丘陵区,设置6个处理,分别为对照(CK)、PAM施用一年(M1)、PAM连续施用二年(M2)、PAM连续施用三年(M3)、PAM连续施用四年(M4)、PAM连续施用五年(M5),通过大田试验,研究PAM施用不同年限对燕麦不同生育阶段的土壤保水、燕麦耗水特征、水分利用效率等特性的影响。结果表明,施用PAM提高了燕麦田不同生育阶段0~60cm土层的土壤含水量,促进了燕麦生物量的积累,降低了燕麦总耗水量,提高了燕麦产量和水分利用效率。各处理中,M4和M5处理的土壤含水量及贮水量均高于其他处理,而总耗水量最低,差异均显著(P0.05);M1、M2处理的多数被测指标与CK无显著差异。苗期0~10cm、拔节期10~20cm、抽穗期20~40cm、灌浆期0~10cm、成熟期10~20cm和40~60cm土层土壤含水量对产量的影响最大。各生育阶段,除播种-苗期及抽穗-灌浆期外,M5处理耗水量均显著低于M4处理。M4处理的经济效益和水分利用效率均最高,较对照分别增加35.67%和3.67kg·hm~(-2)·mm~(-1)。综合考虑产量、经济效益、水分利用效率,燕麦旱作地区应连续4年施用聚丙烯酰胺。  相似文献   

14.
Early vigor and rapid canopy development are important characteristics in aerobic rice culture, where they are highly susceptible to soil water deficits. To elucidate the response of rice's vegetative growth to water management regimes, we evaluated the leaf growth and the concomitant nitrogen (N) utilization of nine cultivars grown in flooded and aerobic culture in 2 years. In aerobic culture, the soil water potential at a depth of 20 cm frequently reached −60 kPa in 2007, but remained above −30 kPa in 2008. The average leaf area index (LAI) in the middle of the vegetative growth stage, N uptake and leaf N content per unit leaf area (specific leaf N; SLN) in aerobic culture were comparable to those in flooded culture. However, there was a significant cultivar × water regime interaction in LAI: cultivars with higher LAI during the vegetative growth stage achieved higher yield in aerobic rice culture. IR72 and Takanari (high-yielding cultivars of flood-irrigated rice) showed poor leaf growth as well as lower N uptake and higher SLN in aerobic culture compared with flooded culture. Our results show that early vigor is closely associated with yield stability to the soil moisture fluctuations in aerobic rice culture, even if weeds are properly controlled. Greater N uptake from aerobic soil and better balancing between the N demand for leaf growth and the N supply to the leaves under fluctuating soil moisture would be, at least in part, relevant to a rice cultivar's adaptation to aerobic conditions.  相似文献   

15.
《Field Crops Research》2002,74(1):67-79
Field experiments were conducted during two rainy seasons to study the effect of soil moisture deficit on total biomass, pod yield, harvest index (HI) and drought tolerance index (DTI) in groundnut (Arachis hypogaea L.) cultivars possessing a wide range of specific leaf area (SLA, 144–241 cm2 g−1). There were three soil moisture regimes: adequate irrigation (W1), drought simulated under rain-out-shelter (W2) and rain-fed (W3). This experiment had two parts, in one, five cultivars were exposed to W1, W2 and W3, and in a second, seven cultivars were exposed to W1 and W3. Using the same set of seven cultivars, pot-culture experiments were conducted to study relative water content (RWC), stomatal conductance (gs) and single leaf carbon exchange rate (CER) during increasing moisture-deficit in two contrasting (rainy and summer) seasons. Variation in DTI was significant, and low SLA types had greater DTI under both W2 and W3. The ranking of SLA among cultivars was consistent between experiments conducted during the two seasons. The rate of reduction in leaf RWC during the progressive moisture-deficit was related directly to SLA (r=0.78, P<0.01). The coefficient of determination of the slopes calculated between RWC and soil moisture during the experimental period was more in the summer (r2=0.82) than the rainy (r2=0.54) season.Under increasing moisture-deficit, the low SLA types were able to maintain higher RWC, CER and gs in both seasons. The relationships between RWC and CER (r=0.91, P<0.01), and RWC and gs (r=0.65, P<0.01) were significant.It is suggested that under water-limited conditions there is a significant inverse relationship between SLA and RWC. The low SLA types (water use efficient) were found to be drought tolerant in terms of total dry matter production in the field studies, and maintenance of higher RWC under drought like situations in pot-culture experiments. Thus the ability of the low SLA types (higher water use efficiency, WUE) to maintain higher RWC may form the basis for the differences in drought tolerance vis a vis WUE in groundnut cultivars differing in SLA. Suggestions are made to select parents for drought tolerance or WUE, and to initiate breeding to combine traits like high HI, and WUE in terms of lower SLA. Ultimately, selection for both WUE (measured in terms of SLA) and yield traits (HI) should result in cultivars with improved performance in rain-fed agriculture.  相似文献   

16.
《Plant Production Science》2013,16(4):514-525
Abstract

We evaluated the genotypic differences in growth, grain yield, and water productivity of six rice (Oryza sativa L.) cultivars from different agricultural ecotypes under four cultivation conditions: continuously flooded paddy (CF), alternate wetting and drying system (AWD) in paddy field, and aerobic rice systems in which irrigation water was applied when soil moisture tension at 15 cm depth reached ?15 kPa (A15) and ?30 kPa (A30). In three of the sixcultivars, we also measured bleeding rate and predawn leaf water potential (LWP) to determine root activity and plant water status. Soil water potential (SWP) in the root zone averaged ?1.3 kPa at 15 cm in AWD, -5.5 and -6.6 kPa at 15 and 35 cm, respectively, in A15, and ?9.1 and ?7.6 kPa at 15 and 35 cm, respectively, in A30. The improved lowland cultivar, Nipponbare gave the highest yield in CF and AWD. The improved upland cultivar, UPLRi-7, and the traditional upland cultivar, Sensho gave the highest yield in A15 and A30, respectively. The yields of traditional upland cultivars,Sensho and Beodien in A30 were not lower than the yields in CF. However, the yields of the improved lowland cultivars, Koshihikari and Nipponbare, were markedly lower in A15 and A30. Total water input was 2145 mm in CF, 1706 mm in AWD, 804 mm in A15, and 627 mm in A30. The water productivity of upland rice cultivars in aerobic plots was 2.2 to 3.6 times higher than that in CF, while those of lowland cultivars in aerobic plots were lower than those in CF. The bleeding rate of Koshihikari was lower in A15 and A30 than in CF and AWD, and its LWP was significantly lower in A15 and A30 than in CF and AWD, but Sensho and Beodien showed no differences among the four cultivation conditions. We conclude that aerobic rice systems are promising technologies for farmers who lack access to enough water to grow flooded lowland rice. However, lowland cultivars showed severe growth and yield reductions under aerobic soil conditions. This might result from poor root systems and poor root function, which limits water absorption and thus decreases LWP. More research on the morphological and physiological traits under aerobic rice systems is needed.  相似文献   

17.
东北地区沟垄和地膜覆盖对土壤水分分布及利用的影响   总被引:2,自引:0,他引:2  
定量化分析沟垄和地膜覆盖对玉米根区0~100 cm土壤水分分配、耗水量和玉米水分利用效率的影响。结果表明,与平作不覆膜(NRF)相比较,沟垄不覆膜(RF_0)没有提高出苗前玉米根区0~20 cm土壤含水量,沟垄覆膜(RF_(100)和RF_(58))提高玉米种子周围0~10 cm土壤水分含量。RF_0处理没有使玉米最大日耗水量提前,覆膜处理提前10 d。沟垄种植(RF_(100)、RF_(58)和RF_0)没有降低花期最大日平均耗水量,提高玉米产量水分利用效率和干物质水分利用效率,覆膜处理进一步提高。沟垄和覆膜处理对水分吸收和利用受降水年型的影响,这种提高效应在少雨年份尤为明显。沟垄覆膜处理可有效规避作物生长发育过程中由于降水分布不均引起的干旱风险,确保作物高产、稳产。  相似文献   

18.
Summary

Drought is a major production constraint of rainfed lowland rice grown in Thailand and Laos. Adverse soil conditions also reduce yield. In an attempt to increase rainfed lowland rice production in these countries, a major collaborative international project was conducted during a 6-year period in the region. The objectives of the project were to quantify production constraints, determine genotypic variation in yield, and identify an effective breeding strategy. A rice simulation model was developed also and used to investigate the potential impact of strategies for genetic improvement and agronomic management.

Four major physical or biological constraints to higher production levels of rainfed lowland rice were identified, (1) the lack of standing water at the appropriate time of transplanting, (2) severe water stress that often develops at the end of the growing season, (3) low yield potential of the present cultivars, particularly in Thailand, and (4) adverse soil conditions including low pH and low soil fertility. The results of the field experiments and simulation modelling exercises showed that the influence of these constraints can be reduced and yield increased by several methods : in particular, choice of appropriate cultivars and time of sowing to match crop phenology with water availability, application of appropriate fertilizer, adoption of high yielding cultivars, adoption of direct seeding in place of the traditional transplanting system, and reduction of percolation water loss from the paddies.

A technology package currendy being investigated for the rainfed lowland rice is direct seeding early in the season, using cultivars that flower by the end of the rainy season, with application of organic or chemical fertilizer. The appropriate cultivars are early flowering and short-intermediate statured, possess high yield potential and ability to maintain favourable plant water status at flowering, and have the ability to establish well and compete against weed under direct seeding.  相似文献   

19.
Due to global warming, water is expected to become scarce especially in semiarid regions. Therefore, there is a need to increase the efficiency in water use by crops under rainfed agriculture. The effect of nutrient availability on the growth, production, root development, water relations and water use efficiency (WUE) by the intercrop maize/cowpea was investigated in 2 contrasting years (dry and wet) in the semiarid region of Brazil. The crops were grown on a strongly acidic, sandy soil with three treatments: (i) application of NPK fertilizers plus lime (NPK + lime), (ii) application of NPK fertilizers (NPK) and (ii) control (Contr.) in low and high input regimes. The soil water balance was calculated with the crop model EPICSEAR. Application of fertilizers and lime increased biomass production and grain yield of the intercrop up to 400% and 550%, respectively, and maize suffered more from the effects of low nutrient availability and soil acidity than cowpea. The root development of both crops was strongly improved by the application of NPK and lime and cowpea developed a deeper root system which enabled this crop to keep a higher transpiration rate in the dry year. As a consequence of the shallow root system, maize was prone to water stresses caused by the dry spells and its harvest index was reduced when dry spells occurred during flowering and grain filling.  相似文献   

20.
水钾耦合对大豆光合特性及其产物积累运转的影响   总被引:2,自引:0,他引:2  
盆栽条件下,研究了不同生育时期水钾耦合对大豆光合特性及水分利用效率的影响,并对光合速率与各器官干物重进行相关分析。结果表明:苗期与花期控水时,土壤水分及水钾互作极显著影响光合速率(Pn);结荚期控水时,水分极显著影响Pn。花期与荚期控水后测定的Pn要高于苗期的Pn。水钾耦合对光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)的影响趋势相似,即水分效应要优于钾肥,且一般而言同一钾肥水平下,土壤水分的影响表现为:W4>W3、W5>W2>W1。只有当土壤水分供应适宜(W3)时,钾肥的施用提高了植株的Pn、Tr和Gs。水分对植株水分利用效率(WUE)的影响要优于钾肥,且水分为正效应。苗期及开花期控水条件下,植株的Pn与根、茎、叶干物重呈极显著正相关(p<0.01),且Pn与各器官的相关程度表现为茎>叶>根;结荚期植株Pn与根、茎、叶干物重仍呈极显著正相关(p<0.01),与荚粒干物重呈显著正相关(p<0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号