首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木薯具有产量高、抗贫瘠等特点,为了了解其耐贫瘠的作用机理,提高木薯在贫瘠土壤中对氮素的利用率,以培养20 d的"华南5号"木薯组培苗为实验材料,采用同源克隆和RT-PCR技术,获得一个高亲和硝态氮转运蛋白(NRT2)基因,命名为Me NRT2.1,该基因含有1 593 bp的开放阅读框架,编码530个氨基酸。生物信息学分析结果表明,木薯Me NRT2.1与苜蓿、拟南芥、可可、杨树等物种的NRT2.1同源性高,其中与可可树Tc NRT2.1的亲缘关系最近,氨基酸相似性达到90%。实时荧光定量PCR检测结果表明,Me NRT2.1在木薯组培苗的根中表达,并且在NO_3~-浓度为0.2 mmol/L时,其相对表达量较高,NO_3~-浓度为10 mmol/L时其相对表达量较低,NO_3~-浓度为0时几乎不表达;Me NRT2.1在茎、叶中也几乎不表达,即该基因具有诱导型组织特异性表达模式。原生质体瞬时表达发现Me NRT2.1定位在细胞膜上。此研究为进一步通过NRT2基因提高木薯的抗逆性奠定了基础。  相似文献   

2.
《Plant Production Science》2013,16(4):406-420
Abstract

Duration of the drought period is important for plant response during drought and after rewatering. We hypothesized that, if drought duration is extended, (1) high seedling vigor and rapid development of a deep root system will not be advantageous, and (2) osmotic adjustment will be more important. Six diverse rice (Oryza sativa L.) genotypes were selected from rainfed lowland germplasms to examine the development of a deep root system and osmotic adjustment, and their relationship with biomass production during drought and after rewatering, under two different drought durations (shorter and prolonged) in the greenhouse. NSG19 and KDML105 had greater seedling vigor (larger seedling biomass), developed a deep root system earlier in response to drought, extracted soil water more quickly, and their pre-dawn leaf water potential declined more rapidly during the prolonged drought period. These two genotypes showed superior drought recovery even after a prolonged drought period in which they suffered a greater reduction in transpiration, water use efficiency, and biomass production. The superior recovery ability was associated with larger plant size by the end of the drought period rather than with plant water status during drought, such as osmotic adjustment or leaf water potential. Osmotic adjustment was greater during prolonged drought periods (ca. 0.7 MPa) than during shorter drought periods (ca. 0.5 MPa), and lower osmotic adjustment was mostly associated with a higher leaf water potential. Genotypic variation in osmotic adjustment was observed, but there was no clear relationship between osmotic adjustment and biomass production during drought periods. These patterns of response of rice seedlings to drought and rewatering in the greenhouse should help to explain the patterns of adaptation of rainfed lowland rice in the field. Selection for drought recovery ability should be an advantageous strategy for early season drought.  相似文献   

3.
本研究对5个木薯品种进行核型分析以揭示其核型特征,通过聚类分析来自4个产地的5个品种间的相似性,以探讨其亲缘关系。实验采用压片法,以木薯嫩叶为材料,运用DPS软件对核型资料按照最长距离法进行聚类分析。结果表明,木薯5个品种的染色体数目均为2n=36,其中,SC12的核型公式为2n=36=34m+2sm,SM2300-1的核型公式为2n=36=36m(4SAT)、桂热5号的核型公式为2n=36=36m,云南8号与ZM8752的核型公式均为2n=36=34m(4SAT)+2sm。核型不对称系数范围在56.58~58.85之间,核型类型依次为1A、1B、1B、2A、1A,对称程度较高。聚类结果显示,在遗传距离为0.4时,5个品种分为3类。第Ⅰ类为云南8号,第Ⅱ类包括ZM8752与SM2300-1,第Ⅲ类包括SC12和桂热5号,5个品种存在一定的核型差异,说明具有丰富的遗传多样性。  相似文献   

4.
Some nutritional characteristics of cassava (Manihot esculenta) leaf protein concentrates obtained by ultrafiltration were compared with that obtained by acidic thermocoagulation. Protein concentrates did not show noticable differences in their proximal composition and amino acids content. However, higher values of total carotene, available lysine, and in vitro digestibility were found, in contrast with less content of total cyanide in protein concentrates obtained by ultrafiltration. Protein efficiency ratio (PER) values of the leaf protein concentrates obtained by ultrafiltration were higher than those obtained by thermocoagulation, 1.81 and 1.60 respectively. These values increased to 2.30 and 1.90 when the concentrates were mixed with sesame flour, in proportion according to the chemical score of their proteins.  相似文献   

5.
《Plant Production Science》2013,16(4):267-272
Summary

In spite of the important role it plays for water and nutrient acquisition, information on the root system development in cassava (Manihot esculenta Grantz) is limited. To examine the root length and branching pattern with reference to shoot growth and tuber bulking, we grew cassava plants in containers under natural climatic conditions in the southern end of Sumatra Island, Indonesia. One 20-cm length cutting of cassava (cv. Ardira IV) was planted in either a plastic bucket or a wooden box. The containers, which were filled with heavy clay soil, had different sizes depending on the growing period. At 30, 60, 100, 140, 180, and 270 days after planting (DAP), both the shoot and roots were sampled for quantitative analysis. The dry weight of both shoot and roots increased rapidly with the leaf area. The axile root number, however, decreased from 60 to 140 DAP as a result of the abscission of roots emerging from the basal part of the cutting during tuber bulking. The total root length reached its maximum at 60 DAP and significantly decreased thereafter because of decay and decomposition during tuber bulking. On the other hand, the root branching either increased the branching order or retained it, as determined from a topological point of view. The root branching during the later growing period compensated for the decrease in total root length and contributed to maintain a sufficient root surface area. The surviving roots with a well-developed branching pattern could absorb water and nutrients essential for tuber bulking.  相似文献   

6.
《Plant Production Science》2013,16(4):247-251
Abstract

Root zone temperature (RZT) is an important factor that affects the establishment of crops in the field. This study was conducted to determine the effect of high RZT on the root system development of cassava and sweetpotato and to assess the response of each root system component of cassava and sweetpotato to high RZTs. Cassava and sweetpotato are widely grown crops in soils that are prone to reach a high temperature especially during the dry season. The plant root system was the primary object of investigation in this study. Cassava and sweetpotato cuttings were grown in pots for 20 days in a growth chamber where two different soil temperature regimes were maintained : 40°C (high RZT) and 25°C (normal). High RZT significantly decreased the total length of the adventitious roots (ARs) and the number and total length of the first order lateral roots (LRs) in both cassava and sweetpotato. Reduction in these root growth parameters was greater in the latter than in the former. High RZT caused a marked increase in the number of the second order LRs in sweetpotato and tended to enhance the formation of the third order LRs. Under high RZT, in cassava, a higher proportion of the total number of ARs and the first order LRs, and thus, a greater fraction of the total root length came from the lower nodes of the cuttings that were buried deep in the soil at planting. In sweetpotato, a greater proportion of the total number and total length of the ARs and the first order LRs was observed in the nodes of the cuttings that were buried closer to the soil surface than those buried deeper. An opposite trend was evident in both cassava and sweetpotato grown under a normal RZT. In the screenhouse experiment where plants were grown for 12 days, root growth of cassava was significantly reduced by the high RZT that prevailed when the soil was not covered with mulch materials. The root development in the mulched soil was similar to that under normal RZT in the growth chamber.  相似文献   

7.
Rapid identification of phosphorus (P) stress-tolerant cassava varieties by in vitro and molecular screening is essential for sustainable food production. The objectives of this study were to describe morphological and molecular responses of 10 cassava cultivars to in vitro-induced P stress and identify P-stress-tolerant ones. Plantlets were raised from nodal segments on Murashige and Skoog (MS) medium containing either P or no P (control). The ?tudу was conducted as a 2 × 10 factorial arrangement using a randomized complete-block design with thrее rерliсаtе?. On P-stress medium, TMS 01/1371 did not produce roots, TMS 94/0039 produced roots after three weeks, and MM 96/1751, MM 98/3437, TMS 01/0040, TMS 30040, TMS 84/00353, TMS 91934, TMS 92B/00061, and TMS 94/0026 produced roots after six weeks. Phosphorus-stress treatment reduced number of leaves, number of roots, and number of shoots by 41.8%, 214.7%, 139.2%, respectively. Similarly, P-stress treatment decreased dry weight (DW) of TMS 01/0040, TMS 01/1371, TMS 84/00353, TMS 91934, TMS 92B/00061, and TMS94/0026 by an average of 10.2%. However, P-stress treatment increased DW of MM 96/1751, MM 98/3437 and TMS 94/0039 by an average of 8.4%; P-stress treatment had no effect on DW of TMS 30040. Expression of MeWRKY gene was higher in roots than in leaves of all cultivars by an average of 88.1%. Stress tolerance index relative to P showed that MM 96/1751, MM 98/3437, TMS 94/0039, and TMS 30040 were P-stress tolerant and therefore recommended for breeding and for production to farmers.  相似文献   

8.
Rapid selection of drought-tolerant cassava varieties by in vitro screening is essential for efficient breeding for drought tolerance. The objectives of this study were to describe the morphological response of 12 cassava cultivars to in vitro mannitol-induced drought stress and identify tolerant ones. Plantlets were raised from nodal segments on Murashige and Skoog (MS) medium containing either 0 g/L or 20 g/L mannitol. Mannitol increased the number of shoots of plantlets per explant (NSS) of all cultivars by an average of 18.2%. However, mannitol decreased the dry shoot weight (DSW) of all cultivars by half. Mannitol decreased total number of leaves (TNL) of plantlets by more than half in all cultivars, except three, in which mannitol had no effect on the TNL. The average root length (ARL) of each one of the following four varieties: TMS 30572, TMS 50395, MM 96/1751, and TMS 94/0026, was not sensitive to mannitol treatment. However, mannitol increased the ARL of MM 98/3437, TMS 94/0039, TMS 92B/00061, TMS 91934 and TMS 84/00353 but decreased the ARL of TMS 05/1654, TME 419, and TMS 92/0326. Mannitol had no effect on dry root weight (DRW) of plantlets of TMS 91934, TMS 94/0026, TME 419, TMS 30572, TMS 50395, and MM 98/3437. The DRW of each of the following four varieties: TMS 05/1654, TMS 92/0326, TMS 92B/00061, and TMS 94/0039, was decreased by mannitol, whereas the DRW of each of TMS 84/00353 and MM 96/1751 was increased by an average of 42.4%. Stress-tolerance index showed that TMS 84/00353, MM 96/1751, MM 98/3437, and TMS 94/0026 were tolerant of mannitol-induced drought stress and, therefore, recommended for planting in drought-prone regions by farmers.  相似文献   

9.
用相对耐寒的2个木薯品种华南124和Arg7为材料,设置14℃弱低温驯化后4℃伤害处理、非驯化直接4℃处理和25℃对照,观察和测定了木薯在低温驯化处理下的形态与生理变化。结果表明,该2个品种经低温驯化处理后比非驯化处理,植株形态损伤减轻,恢复正常温度后形态恢复力增强;叶片中的叶绿素含量下降延缓、脯氨酸含量增幅高而丙二醛含量指示的细胞膜破损变小;而在温度恢复过程中叶绿素含量、叶片脯氨酸含量增加均较快。形态与生理指数一致表明,弱低温驯化能够有效提高木薯对低温的适应能力及恢复能力。  相似文献   

10.
《Plant Production Science》2013,16(3):324-335
Abstract

Soil water regimes under field conditions inevitably tend to fluctuate ranging from drought to waterlogging. Genotypes that adapt better to such changing hydrologic conditions are assumed to have the ability to maintain root system development under such conditions. This study aimed to evaluate the responses of root system development based on lateral root production to transient moisture stresses, and the contribution of the elongation of seminal and nodal root axes and their lateral, root branching, and aerenchyma development in the seminal root axis, to root system development. The seedlings of two aerobic genotypes (UPLRi7 and NSICRc9) and one irrigated-lowland genotype (PSBRc82), and two parental genotypes (Nipponbare and Kasalath) of chromosome segment substitution lines (CSSLs) were grown by hydroponics. The seedlings were exposed to a drought condition by adding polyethylene glycol to the solution for 7 days and then to an O2-deficient stagnant condition for 7 days (drought-to-stagnant condition), or to reverse successive conditions (stagnant-to-drought condition). Under both conditions, the aerobic genotypes showed greater ability to produce lateral roots than the irrigated-lowland genotype. Under the transient stagnant-to-drought condition, the root traits that contributed to greater lateral root production in the aerobic genotypes were faster seminal root elongation that was closely associated with branching of lateral roots, and greater nodal root production. Under transient drought to stagnant condition; these were faster seminal root elongation mediated by higher aerenchyma formation, and greater nodal root production. Kasalath showed much greater ability to produce lateral roots under both transient moisture stress conditions than Nipponbare. This indicates the potential utility of the CSSLs for precise identification of desirable root traits with less genetic confounding.  相似文献   

11.
木薯作为一种经济作物,具有良好的综合利用价值,其加工利用途径非常广泛。根据我国近几年木薯加工的研究成果,对我国木薯加工业的发展现状进行了概述,指出了我国木薯加工在原料、加工技术、产业等方面存在的一些问题,并就此提出几点建议。  相似文献   

12.
《Plant Production Science》2013,16(4):457-465
Abstract

Drought and waterlogging that occur sequentially under field conditions are important abiotic stresses affecting plant growth and development. The ability to maintain the root system development during the contrasting moisture stresses may be one of the key traits for plant adaptation. This study aimed to identify the key root traits that contributed to the above ability by comparatively examining the effects of the two moisture stresses in succession on root system development. The chromosome segment substitution lines (CSSLs) from the crosses between the japonica rice cultivar Nipponbare and indica rice cultivar Kasalath were used for precise comparison of root system development. The rice seedlings were grown by hydroponics under a continuously well-aerated condition for 14 days (non-stressed), a drought condition for 7 days followed by an oxygen (O2)-deficient (stagnant) condition for 7 days (drought-to-stagnant, D-S), or a stagnant condition for 7 days followed by drought condition for 7 days (stagnant-to-drought, S-D). CSSL43 and 47 did not show any significant differences in growth from Nipponbare under the non-stressed condition, but exhibited greater lateral root production under the stresses. Lateral root production was most closely related to faster seminal root elongation mediated by higher aerenchyma formation in the D-S condition, and to more branching of lateral roots on the seminal root axis in the S-D condition. The D-S condition severely affected lateral root production due to reduced seminal root elongation and aerenchyma formation. These results confirmed the fact that those root traits previously identified using different cultivars greatly contribute to plant adaptation. Oxygen deficiency preceded by drought (D-S) was more stressful to roots than drought preceded by O2 deficiency (S-D), because drought reduced root aerenchyma formation during the subsequent stagnant condition.  相似文献   

13.
《Plant Production Science》2013,16(3):335-343
Abstract

Developmental plasticity in lateral roots may be one of the key traits for the growth of rice plants under soil moisture fluctuations. We aimed to examine responses in seminal root system development to changing soil moisture for diverse rice cultivars. Special attention was paid to the two different types of lateral roots ; the generally long, thick L type capable of branching into higher orders, and the non-branching S type. Plants were grown in half-split polyvinyl chloride tubes fixed with transparent acrylic plate for root observation under glasshouse conditions. When plants were grown first under drought conditions, then rewatered, the seminal root system development in terms of dry weight and total length was promoted as compared with plants grown under continuously well-watered conditions in IR AT 109 and Dular, drought tolerant cultivars. Promoted production of L type lateral roots mainly contributed to the development of the longer seminal root system. Plants exposed to soil submergence before they were grown under drought conditions did not show such promoted responses in these two cultivars. However, in KDML 105, a drought tolerant cultivar, the production of especially L type laterals was substantially promoted under drought and rewatered conditions. Honenwase was characterized by the shallow root system and great reduction in root system length when soil moisture becomes limited. These facts show that genotypic variations exist in the plastic response of rice seminal root system and that the L type lateral root plays a key role in manifestation of this plasticity.  相似文献   

14.
转化酶抑制子调控转化酶的活性,在植物的糖代谢过程中具有重要作用。为了研究木薯的转化酶抑制子,本实验利用木薯基因组数据库分析及RT-PCR方法,从木薯中分离了1个木薯转化酶抑制子MeINH3的cDNA序列。MeINH3序列长度为564 bp,包含528 bp的完整开放阅读框,编码127个氨基酸,N端有16个氨基酸残基的信号肽,4个保守的半胱氨酸残基可形成两个二硫桥。亚细胞定位预测表明,MeINH3蛋白定位于胞外。根据生物信息学分析结果,推测其可能抑制木薯细胞壁转化酶活性。  相似文献   

15.
Chilling-induced accumulation of reactive oxygen species(ROS) is harmful to plants, which usually produce anthocyanins to scavenge ROS as protection from chilling stress. As a tropical crop, cassava is hypersensitive to chilling, but the biochemical basis of this hypersensitivity remains unclear. We previously generated Me MYB2-RNAi transgenic cassava with increased chilling tolerance. Here we report that Me MYB2-RNAi transgenic cassava accumulated less ROS but more cyanidin-3-O-glucoside than t...  相似文献   

16.
《Plant Production Science》2013,16(4):295-304
Abstract

The genotypic variation of oxidative damage under oxidative and drought stresses was evaluated for a total of 67 rice cultivars consisting of 61 from the rice diversity research set of germplasm and 6 high-yielding varieties. The maximum quantum yield of photosystem II (Fv/Fm) and the membrane stability index (MSI) were measured to assess the oxidative damage induced by methyl viologen (MV) for oxidative stress and polyethylene glycol (PEG) for drought stress. Considerable variations in Fv/Fm and MSI among the cultivars in MV treatment indicated the existence of genotypic diversity in the susceptibility to oxidative damage. The weak relationships of Fv/Fm and MSI between MV and PEG treatment suggested that mechanisms other than oxidative stress tolerance affected the genotypic diversity of oxidative damage in PEG treatment. We used principal component analysis to quantify the cross-tolerance to oxidative damage under MV and PEG treatments: cross-tolerance was higher in cultivars in the japonica group than in the indica groups and higher in the improved cultivars than in the landraces. These results suggest that genotypic diversity of cross-tolerance is related to adaptation to the ecosystem where the genotypes originated and that the characteristics responsible for the tolerance to oxidative damage have been selected during breeding for improved grain yield.  相似文献   

17.
《Plant Production Science》2013,16(5):497-508
Abstract

Doubled haploid lines (DHLs) of rice (Oryza sativa L.) were used to examine responses to drought and rewatering in controlled rainfed lowland conditions, in order to determine whether confounding by unrelated traits would be less than has been reported previously for contrasting cultivars that differ in genetic background. IR62266 and four DHLs derived from the cross between IR62266 and CT9993 (DHL-32, -51, -54 and -79) were grown in pot experiments in the greenhouse during the 2000 dry and wet seasons at IRRI, Los Baños, Philippines. There were two water regimes (well-watered and drought). Estimated water extraction obtained by time domain reflectometry (TDR) was similar to cumulative transpiration estimated from pot weighing for each genotype. Genotypic variation was observed in root traits and water extraction, with extraction slower in DHL-32 and faster in DHL-79, especially in deeper soil layers. An upper bound relationship between water extraction from a soil layer and root length density (RLD) in that layer was readily apparent over DHLs and soil depths, suggesting a critical value of RLD for water extraction of 0.30 cm cm?3 in these conditions. Because soils in the field would not be as homogenous as the puddled soils used in these greenhouse experiments, this critical RLD for water extraction from a soil layer is a reference for ideal conditions, and requires careful validation in the field. Use of DHLs permitted comparisons with reduced confounding by genetic background, with consequent improvements in precision.  相似文献   

18.
不同基因型玉米自交系苗期干旱-复水的生理响应机制   总被引:3,自引:1,他引:3  
采用称重控水法模拟干旱胁迫,设对照和胁迫两个处理,在3叶期对24个玉米自交系叶片相对含水量(RWC)、游离脯氨酸(Pro)等生理指标进行测定,研究玉米的抗旱机理及复水补偿效应机制。结果表明,干旱胁迫下玉米叶片相对含水量、叶绿素荧光参数(F_v/F_m)和叶绿素含量(Chl)与对照相比显著下降,游离脯氨酸(Pro)、超氧化物歧化酶(SOD)和氧化物酶(POD)明显上升,复水后不同基因型自交系各生理指标表现出不同程度的补偿效应。利用隶属函数法将D17982、郑H71、PH4CV、昌7-2和L269等14份自交系归为抗旱性较强的自交系,PH4CV、HCL645、D17982、郑7314、郑H71和郑9712这6份自交系归为复水恢复能力强的自交系。  相似文献   

19.
邓德力  王斌  曾长英  郭鑫  彭明 《热带作物学报》2015,36(11):1986-1993
在2个木薯品种中检测MeGSTU7基因在不同干旱胁迫阶段的表达量变化,并克隆测序了60个木薯品种的基因区DNA序列,分析基因核苷酸多态性及其自然变异,并将核苷酸多态性与干旱胁迫表型关联分析,挖掘优等位变异。结果表明,干旱胁迫条件下,2个品种的MeGSTU7的表达量均上调。MeGSTU7基因区核苷酸变异丰富,共有23个SNP位点,A/G突变为主;外显子区总计10个同义突变,12个非同义突变;外显子区在品种资源群体中有4种主要单倍型,所有的单倍型分为两大类,分子进化分析表明,MeGSTU7的外显子区的两端受到很强的正选择作用;Q+K+MLM混合线性模型关联分析结果表明,1个Indel和2个SNP与干旱胁迫下地上部鲜重耐旱系数显著关联,并筛选得到了优等位变异。  相似文献   

20.
为研究木薯中调控支链淀粉合成的DBE和SBE基因如何被茉莉酸信号调控,首先对木薯基因组数据库中的MeDBE和MeSBE2.1基因进行序列分析,二者都具有α淀粉酶催化结构域且启动子区都具有茉莉酸响应元件等多种响应元件。以木薯品种‘华南八号’悬浮培养细胞为材料,利用qRT-PCR检测木薯MeDBE和MeSBE2.1基因在茉莉酸甲酯处理后的表达特性。结果显示:MeDBE基因的表达在最初短暂上调后持续下调,而MeSBE2.1则持续上调后又恢复最初水平,说明MeDBE和MeSBE2.1基因可被茉莉酸信号调控,进一步推测表明,其受到不同激素信号整合后的综合调控,以影响支链淀粉的生物合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号