首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Plant Production Science》2013,16(3):276-279
Abstract

Direct-seeding has been proposed as a water- and labor-saving method to grow irrigated rice. Our objective was to compare the effects of flooded and aerobic conditions on the yield stability of direct-seeded rice. We set up four trials in the field: aerobic, near-saturated and flooded soils with direct seeding, and flooded soil with transplanting. Grain yield of direct-seeded rice was comparable to that of transplanted under flooded conditions. However, the yield of direct-seeded rice under aerobic conditions was up to 21% lower than that under flooded conditions. This poor performance was associated with reduced leaf growth during the vegetative stage. Our results indicate that the yield stability of direct-seeded rice could be lowered by the water-saving irrigation, compared with the conventional flooded culture. In order to save irrigation water, physiological research on direct-seeded rice should target the vulnerability of rice to aerobic soils or to soil moisture fluctuations.  相似文献   

2.
Plastic film or straw mulching cultivation under non-flooded condition has been considered as a new water-saving technique in rice production. This study aimed to investigate the yield performance in terms of quality and quantity and water use efficiency (WUE) under such practices. A field experiment across 3 years was conducted with two high-yielding rice cultivars, Zhendao 88 (a japonica cultivar) and Shanyou 63 (an indica hybrid cultivar) and four cultivation treatments imposed from transplanting to maturity: traditional flooding as control (TF), non-flooded plastic film mulching (PM), non-flooded wheat straw mulching (SM), and non-flooded no mulching (NM). Compared with those under the TF, root oxidation activity, photosynthetic rate, and activities of key enzymes in sucrose-to-starch conversion in grains during the grain filling period were significantly increased under the SM, whereas they were significantly reduced under the PM and NM treatments. Grain yield showed some reduction under all the non-flooded cultivations but differed largely among the treatments. The reduction in yield was 7.3–17.5% under the PM, 2.8–6.3% under the SM, and 39–49% under the NM. The difference in grain yield was not significant between TF and SM treatments. WUE for irrigation was increased by 314–367% under the PM, 307–321% under the SM, and 98–138% under the NM. Under the same treatment especially under non-flooded conditions, the indica hybrid cultivar showed a higher grain yield and higher WUE than the japonica cultivar. The SM significantly improved milling, appearance, and cooking qualities, whereas the PM or the NM decreased these qualities. We conclude that both PM and SM could significantly increase WUE, while the SM could also maintain a high grain yield and improve quality of rice. The SM would be a better practice than the PM in areas where water is scarce while temperature is favorable to rice growth, such as in Southeast China.  相似文献   

3.
In order to assess direct seeding of rice technology to cope with future agricultural labor shortage in Cambodia, agronomic experiments were conducted in 2005 and 2006 to compare direct seeding with transplanting under three water conditions (non-flooded, shallow flooded, and deep flooded conditions) with/without weed control by herbicides (bentazone and cyhalofop-butyl) for two Cambodian rice varieties (shorter stature and early maturity Sen Pidao, taller stature and longer maturity Phka Rumduol). Average rice yield in 2 years was lower in direct seeding (341 g m−2) than transplanting (404 g m−2), but interaction components with year, varieties, water conditions, and weed management were significant, and the attained maximum yield of direct seeding (510 and 464 g m−2 for Phka Rumduol variety in shallow flooded condition with weeding in 2005 and 2006, respectively) was similar to that of transplanting. Plant length and dry weight of rice were reduced in non-flooded and deep flooded conditions compared with shallow flooded condition, and grain yield was the highest in shallow flooded condition. Yield advantage of Phka Rumduol over Sen Pidao increased under direct seeding, particularly under non-flooded conditions in 2005 because weed infestation was more suppressed in Phka Rumduol even without weeding. Increase in 100 g m−2 of weed infestation prior to heading (dry weight basis) reduced about 20% of attainable yield with weed control. This study identified importance of stature and growth duration of rice varieties and presence of standing water as well as the weed control, in order to develop and extend direct seeding in the Cambodia.  相似文献   

4.
Rice (Oryza sativa) is one of the main foodstuffs of Chinese people. More than 30% crop field is used for rice cultivation in China. It provides 45% of crop yields in our country. However, the production of irrigated rice requires considerable water, up t…  相似文献   

5.
免耕覆草旱作条件下水稻的生长特性   总被引:1,自引:0,他引:1  
 通过田间定位试验,研究了免耕覆草旱作、免耕裸地旱作和免耕水作3种栽培方式对晚稻生长状况和产量的影响。结果表明,免耕覆草旱作水稻产量与免耕水作差异不大,但两者明显高于免耕裸地旱作。与免耕裸地旱作相比,免耕覆草旱作明显提高水稻的有效穗数和每穴总粒数。免耕覆草旱作水稻可获得与免耕水作相当的地上部干物质量。与免耕水作相比,免耕旱作显著降低抽穗期水稻功能叶叶面积。与免耕裸地旱作相比,免耕覆草旱作明显提高灌浆期水稻总根长和根数。  相似文献   

6.
A long-term field experiment(started at 2003)was conducted to determine the effects of different rice cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China(Yujiang County,Jiangxi Province).The rice cultivation methods included no-tillage and flooded rice cultivation(N-F),no-tillage and non-flooded rice cultivation with straw mulching(N-SM),and no-tillage and non-flooded rice cultivation without straw ...  相似文献   

7.
A field experiment was carried out to investigate the effects of alternate irrigation (AI) on the yield, water use and water use efficiency (WUE) of wheat (Triticum aestivum L.)/maize (Zea mays L.) intercropping system in an oasis region of northwest China in 2006-2008. Three planting patterns, i.e., sole wheat, sole maize and wheat/maize intercropping. Three irrigation levels were applied for each treatment during 3 years. Results showed that land use efficiency of wheat and maize was significantly enhanced by intercropping system; land equivalent ratio (LER) of wheat/maize intercropping system in different treatments was all greater than 1.0. Moreover, significant difference in grain yield was observed between intercropping treatment and sole cropping treatment, in which the yield of intercropped wheat was 55.37-74.88% of sole wheat, and intercropped maize was 66.63-78.87% of sole maize. Wheat/maize intercropping treatments increased water use by 1.8-16.4% than half of the total water use of sole-cropping wheat and maize. Compared to sole cropping wheat treatments, wheat/maize intercropping with alternate irrigation significantly improved water use efficiency (WUE) by 30.5-57.7%, 55.5-71.4% and 12.0-19.8%, and increased by 32.7-37.8%, 9.5-15.8% and 4.0-20.8% than sole cropping maize treatments in 2006-2008, respectively. Our results suggest that AI should be a useful water-saving irrigation method on wheat/maize intercropping in arid oasis field where intercropping planting is decreased because of limited water resource.  相似文献   

8.
水稻是耗水第一大作物。发展节水栽培对稻田水分高效利用和缓解我国水资源短缺具有重要意义。水稻根系是吸收水分和养分的重要器官,也是多种激素、氨基酸和有机酸合成的重要部位。水分管理措施的改变会直接或间接引起根系生长发育发生改变,从而影响水稻地上部生长发育和产量形成。本文综述了干湿交替灌溉、控制灌溉和覆盖旱种对水稻根系形态和生理特性的影响,提出了今后节水灌溉下水稻根系的研究重点,以期为改善水稻根系形态生理和高产节水栽培提供理论依据。  相似文献   

9.
主要节水灌溉方式对水稻根系形态生理的影响   总被引:2,自引:0,他引:2  
水稻是耗水第一大作物。发展节水栽培对稻田水分高效利用和缓解我国水资源短缺具有重要意义。水稻根系是吸收水分和养分的重要器官,也是多种激素、氨基酸和有机酸合成的重要部位。水分管理措施的改变会直接或间接引起根系生长发育发生改变,从而影响水稻地上部生长发育和产量形成。本文综述了干湿交替灌溉、控制灌溉和覆盖旱种对水稻根系形态和生理特性的影响,提出了今后节水灌溉下水稻根系的研究重点,以期为改善水稻根系形态生理和高产节水栽培提供理论依据。  相似文献   

10.
An experiment was conducted in three fallow paddy fields situated on the mid-tropical plain zone of a northeastern Indian state(Tripura) to provide rice fallow management options using leftover soil moisture and nutrients. The three experimental fields were managed by growing rice under the system of rice intensification as the rainy season crop and then groundnut, lentil, rapeseed and potato as the post-rainy season crops. Fertilization under the integrated nutrient management system and lifesaving irrigation at critical stages of each post-rainy season crop were provided. Results showed that the field water use efficiency values were 5.93, 2.39, 2.37 and 59.76 kg/(hm2·mm) and that the yield of these crops increased by approximately 20%, 34%, 40% and 20% after applying two lifesaving irrigations in groundnut, lentil, rapeseed and potato, respectively. Therefore, fallow paddy field can provide possible profitable crops during the post-rainy season by utilizing the residual moisture and minimum supplemental irrigation under improved nutrient management practices.  相似文献   

11.
华北平原不同种植模式的水氮利用   总被引:2,自引:1,他引:1  
2007~2009年在河北省中国农业大学吴桥实验站进行两年的田间定位试验,试验设3个种植模式,分别为冬小麦-夏玉米一年两熟常规模式、春玉米一熟优化管理模式和冬小麦-夏玉米-春玉米两年三熟优化管理模式,探讨在华北地区通过调整种植模式的途径实现农业节水减氮的潜力。结果表明,冬小麦-夏玉米一年两熟常规模式(对照)具有显著产量优势,但水分利用率和氮肥利用率均较低,水氮浪费较为严重,不利于华北平原地区农业的可持续发展;与对照相比,春玉米一熟模式水氮消耗量最小,水氮利用率均显著提高,具有良好的环境效应,但其产量降低较多,不适宜在生产中单独推广;两年三熟模式两年总灌溉用水量降低了63%,氮肥用量降低了75%,产量降低了21%,节水减氮效果明显,水氮利用效率显著提高,该模式进一步完善后可适当推广。  相似文献   

12.
为探讨适宜河北山前平原高产限水区冬小麦节水稳产的种植模式,于2014-2015年研究了不同种植模式对最大叶面积指数、群体变化、表层土壤水分含量、耗水特性、产量及水分利用效率的影响。试验设秸秆覆盖(微喷灌)、全膜覆土穴播(不灌水)、垄上覆膜(膜侧条播,淋灌)、免耕沟播(每沟淋灌)、免耕沟播(隔沟淋灌)、微喷灌对照、畦灌对照共7个处理,畦灌对照灌水量为150mm(越冬水和拔节水各75mm),各微灌处理灌水量均为30mm(拔节水)。结果表明,秸秆覆盖处理较微喷灌对照增产2.1%,差异不显著,水分利用效率二者相同;秸秆覆盖处理冬前、返青期、拔节期表层土壤水分含量均高于微喷灌对照。秸秆覆盖处理、微喷灌对照较畦灌对照分别减产0.6%和2.6%,差异不显著,而水分利用效率同为31.7kg·hm-2·mm-1,较畦灌对照增加32.1%,差异极显著。秸秆覆盖处理成穗率显著高于微喷灌对照,微喷灌对照成穗率显著高于畦灌对照;秸秆覆盖处理冬前0~20cm土层含水量较微喷灌对照、畦灌对照分别增加6.36%和5.92%,差异均显著。秸秆覆盖处理下冬小麦生育期土壤水消耗量略低于膜侧条播处理,而高于其他微灌处理,说明秸秆覆盖模式在降水量偏少的年份有利于冬小麦利用0~2m土壤贮水。  相似文献   

13.
Water resources are limited for irrigation worldwide; therefore, there is a need for water-saving irrigation practices to be explored. Partial root-zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Experiments were conducted in potato (Solanum tuberosum L. cv. Folva) under open field conditions in 2004 and under a mobile rainout shelter in 2005. Two subsurface irrigation treatments were studied: full irrigation (FI) receiving 100% of evaporative demands, 50.1 and 201 mm of irrigation water in the 2 years, to keep it close to field capacity; and PRD, which received 21.7 and 140 mm of irrigation in 2004 and 2005 respectively. Due to rain in 2004, the PRD treatment was imposed over a short period only during the late tuber filling and maturing stages. In 2005, the PRD treatment was imposed during the whole period of tuber filling and tuber maturation. The PRD treatment was shifted from one side to the other side of potato plants every 5–10 days. Especially in 2005 it was apparent that stomatal conductance was generally lower in the PRD than in the FI plants, whereas leaf water potential tended to be lower in only a few instances. During the treatment period, plants were harvested five times, and no significant difference was found between the treatments in leaf area index, top dry mass and tuber yield. At final harvest, tubers were graded based on size into four classes C1–C4, of which the yield of the important marketable class (C2) was significantly higher (20%) in the PRD than in the FI treatment. Compared with FI, the PRD treatment saved 30% of irrigation water while maintaining tuber yield, leading to a 61% increase of irrigation water use efficiency. The limited data of 2004 support these results. In summary, PRD is a promising water-saving irrigation strategy for potato production in areas with limited water resources.  相似文献   

14.
《Plant Production Science》2013,16(4):514-525
Abstract

We evaluated the genotypic differences in growth, grain yield, and water productivity of six rice (Oryza sativa L.) cultivars from different agricultural ecotypes under four cultivation conditions: continuously flooded paddy (CF), alternate wetting and drying system (AWD) in paddy field, and aerobic rice systems in which irrigation water was applied when soil moisture tension at 15 cm depth reached ?15 kPa (A15) and ?30 kPa (A30). In three of the sixcultivars, we also measured bleeding rate and predawn leaf water potential (LWP) to determine root activity and plant water status. Soil water potential (SWP) in the root zone averaged ?1.3 kPa at 15 cm in AWD, -5.5 and -6.6 kPa at 15 and 35 cm, respectively, in A15, and ?9.1 and ?7.6 kPa at 15 and 35 cm, respectively, in A30. The improved lowland cultivar, Nipponbare gave the highest yield in CF and AWD. The improved upland cultivar, UPLRi-7, and the traditional upland cultivar, Sensho gave the highest yield in A15 and A30, respectively. The yields of traditional upland cultivars,Sensho and Beodien in A30 were not lower than the yields in CF. However, the yields of the improved lowland cultivars, Koshihikari and Nipponbare, were markedly lower in A15 and A30. Total water input was 2145 mm in CF, 1706 mm in AWD, 804 mm in A15, and 627 mm in A30. The water productivity of upland rice cultivars in aerobic plots was 2.2 to 3.6 times higher than that in CF, while those of lowland cultivars in aerobic plots were lower than those in CF. The bleeding rate of Koshihikari was lower in A15 and A30 than in CF and AWD, and its LWP was significantly lower in A15 and A30 than in CF and AWD, but Sensho and Beodien showed no differences among the four cultivation conditions. We conclude that aerobic rice systems are promising technologies for farmers who lack access to enough water to grow flooded lowland rice. However, lowland cultivars showed severe growth and yield reductions under aerobic soil conditions. This might result from poor root systems and poor root function, which limits water absorption and thus decreases LWP. More research on the morphological and physiological traits under aerobic rice systems is needed.  相似文献   

15.
国内外寒地水稻节水灌溉技术研究进展   总被引:1,自引:0,他引:1  
从节水灌溉角度出发,对国内外水稻灌溉技术的研究动态和趋势进行了详细的概述,并结合我国水资源特点,有针对性地介绍了我国水稻灌溉的研究进展,同时提出了几种高产节水灌溉模式,进而为今后的寒地水稻节水灌溉研究提供帮助。  相似文献   

16.
目的 探究节水抗旱稻组合旱优73在不同灌溉条件下产量形成特点及其根系形态生理的变化情况。方法 以节水抗旱稻旱优73和高产水稻H优518为材料,通过根管试验设置三种水分处理(常规灌溉、轻度水分胁迫、重度水分胁迫),调查株高、分蘖、根系形态特征和生理特性以及产量构成因素,分析性状之间的关系,探究不同程度水分胁迫对旱优73和H优518产量形成和根系形态生理的影响及其差异。结果 两年的重复试验结果表明,与常规灌溉相比,在轻度水分胁迫下,旱优73的产量及其构成因素无显著变化,H优518的产量在两年内平均减少了25.6%,每穗粒数、结实率、千粒重也显著降低;在重度水分胁迫下,两品种产量及其构成因素均显著降低,其中,旱优73的产量两年内平均减少了28.8%,H优518产量减少了46.1%。与常  相似文献   

17.
Intensive rice farming in aerobic soil, referred to herein as aerobic rice, can greatly reduce the water input compared to that of flooded rice cultivation. The objective of this study was to compare the potential productivity of aerobic rice and flooded rice using high-yielding varieties at two locations in Japan in two successive years. In aerobic fields, the total amount of water supplied (irrigation plus rainfall) was 800–1300 mm. The soil water potential at 20-cm depth averaged between −15 and −30 kPa each growing season, but frequently reached −60 kPa. The average yield under aerobic conditions was similar to or even higher than that achieved with flooded conditions (7.9 t ha−1 in 2007 and 9.4 t ha−1 in 2008 for aerobic versus 8.2 t ha−1 for flooded). The average water productivity under aerobic conditions was 0.8–1.0 kg grain m−3 water, slightly higher than common values in the literature. The super-high-yielding cultivar Takanari achieved yields greater than 10 t ha−1 with no yield penalty under aerobic conditions in 3 out of 4 experiments. The favorable agronomic characteristic of Takanari was its ample sink capacity (grain number × grain weight). In conclusion, high-productivity rice cultivation in aerobic soil is a promising technology for water conservation. With continued breeding, future aerobic rice varieties will possess large numbers of spikelets and sufficient adaptation to aerobic conditions such that they will consistently achieve yields comparable to the potential yield of flooded rice.  相似文献   

18.
《Field Crops Research》2001,70(2):139-151
The effects of various crop rotations on the biomass and yield of barley (Hordeum vulgare L.), faba bean (Vicia faba L.), and pea (Pisum sativum L.) grown under Mediterranean conditions were studied during three growing seasons in the semiarid Spanish Central Plateau. The treatments comprised six crop sequences: barley monoculture, fallow–barley (currently used in the area), faba bean–barley, pea–barley, fallow–barley–faba bean, and fallow–barley–pea. The fallow was of 16-month duration. The site is representative of cultivated areas of the Plateau, and the soil has a loam texture. Results concentrate on barley as the main crop. Season distribution of rainfall restricted the effectiveness of the management practices and in consequence there were few differences between rotations. Barley had greater biomass and yield after fallow than after other crops but significant differences were dependent on year. Legumes, an alternative to fallow, increased land use, permitted alternative weed control measures, and reduced the need for fertiliser. The intensification of the fallow–barley cropping system is best achieved by reducing the frequency of fallow and including other crops of relatively small biomass production, thereby minimising the impact on yield of the succeeding barley crop.  相似文献   

19.
Cover cropping can have various beneficial effects to the cropping system such us the increase of soil nutrient content and weed suppression. In this respect, the species used for covering is of great importance. This paper reports results on the yield and weed control effects in potato crops preceded by different cover crops over a 2-year period (2003 and 2004) in Central Italy (Viterbo). Results were obtained in the frame of a more complex study set up in 2002 where in a 3-year chick-pea/potato/tomato rotation, each crop was preceded by 7 different soil managements: 5 cover crops (rapeseed, Italian ryegrass, hairy vetch, snail medick and subclover) + 1 unfertilised weedy fallow (cover crop absent) + 1 control (weedy fallow fertilised with mineral N at a rate of 170 kg ha−1 for potato). Two different weed control regimes in potato were also applied [weed-free crop (1 inter-row hoeing + 1 hilling up + manual weeding on the row); mechanical control (1 inter-row hoeing + 1 hilling up)]. Cover crops were sown in September and cut and ploughed just before potato planting in March. The potato crops following the cover crops were only fertilised with green manure. Averaged over years, all the cover crops produced more above-ground dry biomass than the weedy fallow (4.79 t ha−1 on average vs 2.36 t ha−1). Hairy vetch and subclover accumulated the highest N in the incorporated biomass (169 and 147 kg ha−1), followed by snail medick (108), rapeseed (99), ryegrass (88) and weedy fallow (47). Rapeseed and ryegrass were the most efficient weed suppressors and had the least proportion of weed biomass (<1%) of the total produced by the cover, while they also reduced weed emergence in the following potato crops (8.8 plants m−2vs 25.5 plants m−2 with all other cover crops). Following subclover and hairy vetch the potato crop yield was similar to that obtained by mineral N-P-K fertilisation (48.5 t ha−1 of fresh marketable tubers). Mechanical weed control compared to weed free crop always reduced potato yield and the reduction, averaged over years, was greater in N-P-K mineral fertilised control (−23.6%) and smaller in ryegrass (−7.9%).  相似文献   

20.
油菜是我国种植面积最大的油料作物,是国产食用植物油的重要来源。油菜生长过程可以优化土壤结构、增加土壤养分、培肥土壤地力,具有用地养地的特征优势。同时,因其具有较强的环境适应能力,可作为先锋作物改良障碍土壤。然而,近年来由于劳动力不足、种植效益低、农民种植积极性不高等因素,导致冬闲田面积逐年增加,冬季光温水土自然资源未能得到有效利用。而油菜作为冬季种植的油料作物,不与粮争地,是开发利用冬闲田最有潜力的作物。利用冬闲田发展油菜生产,不仅可以提升油料产量,还可以充分发挥其养地优势提高后茬作物产量品质、增加种植收益,对维护我国食用油供给安全、助力粮油兼丰及农业绿色可持续发展具有重要意义。本文结合我国油菜生产现状,针对南方稻区冬闲田油菜轮作的生产发展需要,综述了油菜用地养地(油用或肥用)的作物优势,旨在为因地制宜利用南方冬闲田发展油菜生产助力油料产能提升提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号