首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《Plant Production Science》2013,16(4):471-475
We investigated the morpho-physiological traits of rice (Oryza sativa L.) during the germination and post-germination phases to explore avoidance of hypoxic conditions. We compared four lines selected for anaerobic germination (AG lines) with the variety IR42. The germination capacity of AG lines was higher than that of IR42. The germination percentages and coleoptile elongation differed among the four AG lines; IR06F459 showed the fastest germination and rapid coleoptile elongation. The coleoptiles of IR06F459 were significantly longer than those of IR42. The α-amylase activity in germinating seeds was significantly higher in IR06F459 than in IR42. At 2 days after sowing, the sucrose and glucose concentrations in germinating seeds were higher in IR06F459 than in IR42. These results show that IR06F459, an AG line with a long coleoptile, has high α-amylase activity and high sucrose and glucose concentrations in germinating seeds. These attributes partly explain its vigorous germination and coleoptile growth under hypoxic conditions.  相似文献   

2.
《Plant Production Science》2013,16(3):297-302
A low temperature (10ºC, 48 h) inhibited primary root growth of rice seedlings (Oryza sativa L.). However, the inhibition was significantly mitigated by submergence for 24 h before the exposure to low temperatures, which induced alcohol dehydrogenase and increased the ethanol concentration in roots. Exogenous application of ethanol also had a similar mitigating effect. These results suggest that submergence pretreatment increases the tolerance to low temperature in rice roots due to ethanol accumulation in the roots.  相似文献   

3.
《Plant Production Science》2013,16(3):225-228
Abstract

Seven-day-old rice seedlings ( Oryza sativa L. cv. Kinuhikari) were subjected to anaerobic stress and their proteins were analyzed using SDS-polyacrylamide gel electrophoresis. Anaerobic stress caused only minor changes in the pattern of proteins in the shoots, but disappearance of many protein bands in the roots. Three anaerobic stress proteins (ANPs ; 36-, 40- and 87-kD protein) were selectively induced in both roots and shoots of the seedlings, and 36-kD ANP was identified as the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by limited N-terminal amino acid sequencing. Activities of GAPDH in the shoots and roots were increased by the stress for over 24 h, and were 3.4- and 6.2-fold greater than those in non-stressed seedlings at 24 h, respectively. These results suggest that anaerobiosis induces the production of ANPs including GAPDH in the seedlings, which may allow the seedlings to survive under the stress condition.  相似文献   

4.
5.
《Plant Production Science》2013,16(3):298-306
Abstract

The aim of this study was to verify that wheat seedlings treated with Pseudomonas fluorescens CHA0 (CHA0 hereafter) before inoculation with Gaeumannomyces graminis var. tritici (Ggt), a pathogen of take-all, acquire induced resistance to Ggt. The soil with wheat seedlings growing on it was drenched with a suspension of CHA0 cells and inoculated with Ggt 24 h later. Then, the seedlings were grown in a glasshouse, and severity of take-all disease, fresh weights of root and shoot and lengths of root and shoot, and also the activities of soluble peroxidase (SPOX), ionically cell-wall-bound peroxidase (CWPOX), β-1,3-glucanase, β-1,4-glucanase and the concentration of total phenolic compounds in the root of the seedlings were examined. The results indicated that the treatment with CHA0 before inoculation with Ggt mitigated the disease severity significantly, and increased the root and shoot lengths and root and shoot fresh weights. The treatment with CHA0 increased the activities of SPOX, CWPOX, β-1-3-glucanase, β-1,4-glucanase and phenolic compounds in the wheat roots and the activities of SPOX and β-1,4-glucansee activities were highest at day 4 and those of CWPOX and β-1,3-glucanase at day 6 after inoculation with Ggt. The concentration of total phenolic compounds was also highest at day 6 after the inoculation with Ggt. The results suggest that the take-all suppressing effect of CHA0 may be related to enhanced defense response of the wheat roots.  相似文献   

6.
《Plant Production Science》2013,16(4):305-308
Abstract

The inhibitory effect (allelopathic potential) of shoot, seed and root extracts of 8 white, 5 red and 5 black rice (Oryza sativa L.) cultivars was determined against the seedling growth of lettuce (Lactuca sativa L.) and white clover (Trifolium repens L.). All extracts inhibited hypocotyl and root growth of lettuce and white clover seedlings, and those inhibitory activities ranged from –1% – 96%. The average inhibitory activity of the extracts on the hypocotyl and root growth of lettuce and white clover was 42 – 88%. No apparent difference in the inhibitory activity was found either among the extracts of white, red and black rice, or among the extracts of shoots, seeds and roots. However, the red rice cultivar Tsushima-akamai marked the greatest inhibitory activity with an average of 88% growth inhibition on hypocotyls and roots of lettuce and white clover, followed by Souja-akamai and Koshihikari. These results suggest two red rice, Tsushima-akamai and Souja-akamai, may be potentially useful for weed management in agriculture.  相似文献   

7.
《Plant Production Science》2013,16(3):359-364
Abstract

A priming method called sand priming was developed using sand as a priming solid matrix. The effect of sand priming on improving the field emergence performance of five super sweet corn cultivars was investigated. Sand priming significantly improved field emergence performance of all super sweet corn cultivars, and there was marked improvement by priming at 20ºC for 24 hr. After sand priming at 20ºC for 24 hr, field emergence percentage (FEP) of “Green Superman”, “Huatian 1”, “Yangtian 1”, “Mitian 8”, and “Chaotian 43” was increased by 52.1%, 37.5%, 38.0%, 40.9%, and 33.3%, respectively. Their field emergence speed (FES) was 2.3, 1.8, 2.0, 2.0, and 1.8 times of the control, respectively. To further elucidate the effect of sand priming on improving the field emergence performance of super sweet corn, we analyzed the membrane system integrity, α-amylase activity and protein content. Sand priming at 20ºC for 24 hr improved membrane system integrity and α-amylase activity in all super sweet corn cultivars. Furthermore, sand priming at 20ºC for 24 hr accelerated the degradation of embryo protein after 1 d germination in “Green Superman”.  相似文献   

8.
《Plant Production Science》2013,16(2):128-134
Abstract

Aqueous methanol extracts of a traditional Bangladeshi rice cultivar (Oryza sativa L. cv. Kartikshail) inhibited root and shoot growth of cress (Lepidium sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), timothy (Phleum pratense), crabgrass (Digitaria sanguinalis), Italian ryegrass (Lolium multiflorum), barnyardgrass (Echinochloa crus-galli) and jungle rice (Echinochloa colonum). The inhibition was increased with increasing the extract concentration, which suggests that cv. Kartikshail may have growth inhibitory substances and allelopathic potential. The aqueous methanol extract of cv. Kartikshail was purified and two main inhibitory substances were isolated and identified by spectral data as 3-hydroxy-β-ionone and 9-hydroxy-4-megastigmen-3-one. The concentrations required for 50% growth inhibition on cress roots and shoots, respectively, were 4.9 and 9.5 μM for 3-hydroxy-β-ionone, and 0.54 and 0.72 μM for 9-hydroxy-4-megastigmen-3-one. The concentrations required for 50% growth inhibition on barnyardgrass roots and shoots, respectively, were 160 and 310 μM for 3-hydroxy-β-ionone, and 53 and 140 μM for 9-hydroxy-4-megastigmen-3-one. The inhibitory activity of a mixture of the two compounds was much higher than that of the sum of the two compounds, suggesting that the two compounds may act synergistically to inhibit the growth of cress and barnyardgrass. The present research suggests that 3-hydroxy- β-ionone and 9-hydroxy-4-megastigmen-3-one may be responsible for the growth inhibitory effect of cv. Kartikshail and may play important roles in the allelopathy of cv. Kartikshail. The traditional Bangladeshi rice cultivar Kartikshail may be potentially useful for weed management as a weed suppressing agent when this rice cultivar is incorporated into the soil or included in rice-based cropping systems.  相似文献   

9.
《Plant Production Science》2013,16(4):468-472
Abstract

Improvement of early seedling growth, such as seedling emergence and vigor is one of the most important agronomic traits in direct seeding rice cultivation. The effects of two plant growth regulators (PGRs), gibberellic acid (GA3) and ethephon (ET), on seedling growth under flooded soil conditions at different temperatures and water depths were investigated. The PGRs were applied during the seed soaking process. A single treatment with GA3 or ET increased seedling growth. However, combined application of GA3 and ET was more effective than that of GA3 or ET alone in many cases at both growing temperatures (15 and 20ºC). The growth of different organs in the rice seedlings, such as the coleoptiles, first leaves, and second leaves was also increased by PGR treatment. The nitrogen concentration of the shoot and the ratio of shoot dry weight to shoot length did not differ significantly among the treatments. The results of our study show that rice seedling growth in direct seeding cultivation may be improved by treatment with GA3 and ET in combination.  相似文献   

10.
Phytochromes have been reported to play important roles in seedling de-etiolation and flowering in rice.To identify the roles of phytochromes in regulating root growth and accumulation of dry substances,the lengths of seminal roots and the dry weights of seedlings were measured in the wild type as well as the phytochrome A(phyA) and phytochrome B(phyB) mutants grown under different conditions.When the whole seedlings were exposed to white light,the elongation of the seminal roots was significantly photoinhibited in the wild type,whereas this inhibitory effect was clearly reduced in the phyA and phyB mutants.When the roots of the seedlings were blocked from white light,the phyA and phyB mutants exhibited significantly longer seminal roots than the wild type.These results suggest that both the root-localized and shoot-localized PHYA and PHYB are involved in the photoinhibition of seminal root elongation in rice seedlings.By measuring the dry weights of roots and shoots,it is revealed that PHYB positively regulates the accumulation of dry substances in shoots,however,PHYA exerts the contrary effects on the accumulation of dry substances in roots and shoots of rice seedlings.  相似文献   

11.
《Plant Production Science》2013,16(2):191-198
Abstract

The impacts of the system of rice intensification (SRI) and conventional management (CM) on grain yield, yield components and tillering capacity were examined under 4 rice establishment methods transplanting (TP), seedling casting (SC), mechanical transplanting (MT) and direct seeding (DS). SRI produced significantly higher grain yield than CM under TP and MT but not under DS or SC. DS and SC produced much higher seedling quality than TP or MT, suggesting that robust seedlings with vigorous roots weaken the positive effect of SRI on rice yield. SRI produced a higher tillering rate than CM, but did not affect ear-bearing tiller rate significantly. Moreover, the net photosynthetic rate of the recent fully expanded leaf at mid-tillering stage was significantly higher in SRI than in CM under MT and TP. The obtained results also indicated that SRI increased biomass accumulation before heading and improved utilization of photosynthates in the grain-filling stage.  相似文献   

12.
ABSTRACT

Rice (Oryza sativa L.) is one of the most important staple foods in the world, however most improved rice varieties are susceptible to drought stress. A two-year study was conducted to explore the effects of various drought stresses and subsequent recovery on the accumulation and degradation of proline, total soluble sugar and starch in different rice varieties at vegetative stage. The results showed that relative water content in the leaves and sheaths of rice varieties significantly decreased under drought stresses, but not at the same rate. Under control and drought conditions, the water content in sheaths was higher than that in leaves. Interestingly, under severe drought stress in 2015, the leaf water content was higher than the sheath water content. The water distribution between leaves and sheaths might be a response of plants to protect leaf system from devastation by drought. Proline was highly accumulated under drought stress but rapidly decreased after re-watering. The drought tolerant variety DA8 expressed higher ability in accumulation of proline than susceptible varieties. In general, total soluble sugar and starch contents in leaves and sheaths of varieties decreased under drought stress conditions. Total soluble sugar and starch content of DA8 were less affected than other varieties under drought conditions. Our study indicated that metabolisms of total soluble sugar and starch in rice were affected by both environmental conditions and characteristics of varieties. Proline accumulation ability of varieties can be used as a useful indicator for drought tolerant potential in rice breeding for water-limited environments.  相似文献   

13.
《Plant Production Science》2013,16(4):457-465
Abstract

Drought and waterlogging that occur sequentially under field conditions are important abiotic stresses affecting plant growth and development. The ability to maintain the root system development during the contrasting moisture stresses may be one of the key traits for plant adaptation. This study aimed to identify the key root traits that contributed to the above ability by comparatively examining the effects of the two moisture stresses in succession on root system development. The chromosome segment substitution lines (CSSLs) from the crosses between the japonica rice cultivar Nipponbare and indica rice cultivar Kasalath were used for precise comparison of root system development. The rice seedlings were grown by hydroponics under a continuously well-aerated condition for 14 days (non-stressed), a drought condition for 7 days followed by an oxygen (O2)-deficient (stagnant) condition for 7 days (drought-to-stagnant, D-S), or a stagnant condition for 7 days followed by drought condition for 7 days (stagnant-to-drought, S-D). CSSL43 and 47 did not show any significant differences in growth from Nipponbare under the non-stressed condition, but exhibited greater lateral root production under the stresses. Lateral root production was most closely related to faster seminal root elongation mediated by higher aerenchyma formation in the D-S condition, and to more branching of lateral roots on the seminal root axis in the S-D condition. The D-S condition severely affected lateral root production due to reduced seminal root elongation and aerenchyma formation. These results confirmed the fact that those root traits previously identified using different cultivars greatly contribute to plant adaptation. Oxygen deficiency preceded by drought (D-S) was more stressful to roots than drought preceded by O2 deficiency (S-D), because drought reduced root aerenchyma formation during the subsequent stagnant condition.  相似文献   

14.
15.
《Plant Production Science》2013,16(3):210-214
Summary

The cell elongation-promoting activities of brassinolide (BR) and indoleacetic acid (IAA) in the lamina-inclination test using etiolated rice seedlings were compared at a low temperature. IAA promoted the lamina joint-cell elongation at 30°G, but the effect was markedly lowered with decreasing temperature and reached null at 15°C. On the other hand, BR and castasterone (CAS), a brassinosteroid, promoted this cell elongation even at 15°G. Homobrassinolide (HBR), a brassinosteroid, also promoted this cell elongation, although the activity was weak. The combination of BR and IAA synergistically promoted this cell elongation at a low temperature (15°G).

Immersion of the dry seeds in 2 X 10-8 M BR for the first 24 h promoted the early growth of rice seedlings. This treatment also enhanced the germination rate and the growth after direct sowing in submerged paddy pots in a greenhouse or phytotron at a low temperature (15°C). Leaf spraying of BR on the rice seedlings at the 4th leaf stage increased plant height and the fresh weights of tops and roots even at a low temperature. BR sprayed on the completely expanded 4th leaves did not increase their blade length, but that sprayed on the expanding 5th and 6th leaves strikingly increased their blade length, and the effect tended to be stronger at a low temperature.

These results suggest that BR promotes cell elongation in young rice seedlings under low-temperature stress, although IAA had no such effect, and that BR may promote germination and the early growth of rice seedlings at a low temperature in direct sowing in the submerged paddy field and in the rice nursery.  相似文献   

16.
《Plant Production Science》2013,16(4):453-461
Abstract

Effects of NaCl on the growth, ion content, root cap structure and Casparian band development were examined in four rice (Oryza sativa L.) cultivars with different salt resistance (salt-sensitive indica-type IR 24 and japonica-type Nipponbare and salt-resistant indica-type Nona Bokra and Pokkali). Experiments were conducted to find the differences in salinity resistance during early seedling and developed seedling stages among the cultivars. For salinity treatment, sodium chloride (NaCl) was added to nutrient solution at concentrations of 0, 25 and 50 mM for 7 days from germination to the 7th day (early seedling stage) or from the 7th day to 14th day (developed seedling stage). Growth inhibition by salinity was more prominent in the early seedling stage than in the developed seedling stage. Based on the growth, the order of the sensitivity was IR24 > Nipponbare > Nona Bokra > Pokkali. The growth of NaCl-treated rice cultivars relative to control was significantly and negatively correlated with the Na+ content and Na+/K+ ratio in roots and shoots in both stages. Scanning electron microscopic observation revealed that the root cap tissues proliferated and extended to the basal part of the root tip by salinity. The length of root cap was, however, reduced by 50 mM NaCl in sensitive cultivars due to peeling off. An endodermal Casparian band was formed in the basal region of the root tip. Development of the Casparian band was more prominent in sensitive cultivars than in tolerant cultivars. Root cap proliferation might be related to NaCl resistance in rice seedlings, but the Casparian band may not function efficiently in Na+ exclusion. Essentially the present results suggest that exclusion of Na+ from roots plays a critical role in expression of Na+ resistance in rice seedlings and the root cap is important for Na+ exclusion.  相似文献   

17.
Abstract

In Japan, soybean is usually cultivated in fields that have been converted from rice paddies, and poor seedling establishment due to pre-emergence seedling damping-off is often observed during the rainy season. In this study, the factors that cause the damping-off in flooded soil were investigated under high soil moisture conditions in a greenhouse and in agricultural fields. In sterilized soil sampled from a soybean field, seedlings emerged well under 48-hr flooded conditions. In unsterilized soil, soybean seeds treated with the fungicide, mancozeb+metalaxyl exhibited much higher emergence rates even under 48-hr flooded conditions than the seeds treated with oxytetracycline +streptomycin, benomyl, or flutolanil. Pythium, Phytophthora, Mucorales, Trichoderma, Geotrichum-like microorganisms, and some fungi producing conidia in a false head, were isolated from decayed seedlings. Of the isolated microorganisms, oomycete microorganisms, Pythium helicoides, other Pythium sp., and Phytophthora sp. were pathogenic to soybeans under flooded conditions. As the length of the flooding period increased, pre-emergence seedling rot also increased. However, the pathogenic oomycetes rarely caused pre-emergence seedling rot under conditions without flooding. Furthermore, under flooded conditions, the damage caused by these pathogens was reduced by treating the seeds with mancozeb+metalaxyl. These results indicate that oomycete microorganisms are involved in pre-emergence seedling damping-off under flooded soil conditions.  相似文献   

18.
《Plant Production Science》2013,16(1):134-138
Abstract

A total of 32 rice genotypes carrying different dwarf or semi-dwarf genes were inoculated with the fungus Fusarium moniliforme Sheldon or treated with 50 mg l-1 GA3 in order to select resources resistant to rice bakanae disease from the dwarf materials. The length of the elongated seedlings was measured, and the percentage of death of the seedlings after transplanting to field was also counted. A significant correlation was found between the length of the seedling treated with GA3 and disease injury by bakanae fungus. Rice materials carrying dwarf gene such as sd1 were not only sensitivity to GA3 but also susceptive to rice bakanae disease. Materials carrying dwarf gene d1 were insensitive to GA3 but susceptive to bakanae. On the other hand, all materials carrying d29, sd6 or sdq(t) genes showed resistance to bakanae. The present study indicated that dwarf and semi-dwarf rice materials might be useful resources for improvement of bakanae resistance in rice breeding programs.  相似文献   

19.
《Plant Production Science》2013,16(4):335-341
Abstract

The contribution of cell wall components and nonstructural carbohydrate (NSC) to grain filling in rice (Oryza sativa L.) was clarified by investigating the differences in the dynamics of hemicellulose, sugar composition of hemicellulose, β-(13),(14)-glucan, and NSC among cultivars with different grain filling capacities. This investigation was performed using the stems of standard, high yield and low harvest index (HI) cultivars. Hemicellulose concentration in stems tended to decrease slightly during the grain filling stage. This decrease was attributed to a decrease in β-(13),(14)-glucan concentration, which was detected as a decrease in glucose composition of hemicellulose in the stems during the grain filling stage. The rate of decrease and decrease in the amount of β-(13),(14)-glucan in the stems differed among the cultivars. These were higher in high yield and high HI cultivars than in relatively low yield and low HI cultivars. Moreover, a positive correlation was observed between the rate of decrease in β-(13),(14)-glucan and NSC, indicating similarities in the dynamics of β-(13),(14)-glucan and NSC among the cultivars. When the top half of panicle was removed, β-(13),(14)-glucan and NSC concentrations in the culm and leaf sheath did not decrease during the grain filling stage. Therefore, the β-(13),(14)-glucan in stems might be one of the sources that supply substrate to panicle as well as NSC.  相似文献   

20.
ABSTRACT

The sugar-accumulating potential of global and local sweet and grain sorghum varieties were tested under the local conditions. The basis for this study was the dependency of sugar accumulation on temperature and photoperiod. Thus, the efficacy of cultivars as a bioenergy source would need to be determined based on their performance under the local environmental conditions. A strong correlation of sucrose content with brix was observed, enabling large-scale screening of varieties for high sucrose content. The morphological characteristics inherent in sweet sorghum, such as tall stems, greater number of leaves and a longer vegetative period, were found to correlate with the total stem sugar content. Assessment of sugars along the stem revealed maximum sugar accumulation in the upper intermediate to upper internodes in most of the varieties tested. The maximum theoretical ethanol yield (MTEY), a function of brix and juice yield, was determined as a better indicator of testing the performance of a variety as a potential source of bioethanol, mainly due to a negative correlation of stem juiciness and sucrose content in the varieties tested. Further, the relative expression of vacuolar invertase genes, SbINV1 and SbINV2, was studied, and a strong negative correlation of SbINV2 to stem sucrose content was observed. This reveals a possibility of involvement of vacuolar invertase gene, SbINV2, in sugar accumulation in sweet sorghum stems, and as a key candidate for molecular breeding studies for higher stem sugar content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号