首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
《Plant Production Science》2013,16(4):403-414
Abstract

Plants growing on soil with insufficient moisture need deep and dense roots to avoid water stress. In crop plants, the production of dry matter during ripening of grains is critically important for grain yield. We postulated that shoot growth would be suppressed but root growth would continue under an insufficient soil moisture condition before heading, while shoot growth would be more vigorous than root growth under a sufficient soil moisture condition. We anticipated that the plants growing under an insufficient soil moisture condition before heading would produce more dry matter and grain under an insufficient soil moisture condition during ripening. In order to examine our hypotheses and to determine the fundamental conditions for improving grain yield and efficient use of irrigated water under limited irrigation, we grew wheat plants (Triticum aestivum L., cv. Ayahikari) in pots (30 cm in diameter, 150 cm in height) with insufficient soil moisture (PD-D pots) or sufficient soil moisture (PW-D pots) for six weeks before heading followed by full irrigation, and then insufficient soil moisture condition during ripening. The growth of shoots was suppressed significantly but that of roots was not before heading in PD-D plants, with a higher resultant ratio of root to shoot than in PW-D plants. The former retained a high leaf water potential and, therefore, were able to produce more dry matter and grain during soil moisture depletion during ripening as compared with the latter plants. We also obtained similar results with field-grown plants.  相似文献   

2.
Summary

Summer field crop plants in Japan would develop large shoots but poor root systems during the rainy season called “Baiu”. This might have adverse effects on dry matter production in summer thereafter even when they grow under sufficient soil moisture conditions. The effects of pre-flowering soil moisture conditions on dry matter production and ecophysiological characteristics were investigated.

Soybean plants were grown under sufficient (W plot) and deficient (D plot) soil moisture before flowering in the field. Under sufficient soil moisture conditions after flowering, the plants in the D plot produced higher dry matter due to higher net assimilation rate (NAR) and higher grain yield due to higher pod-flower set ratio and a heavier seed than in the W plot. The higher NAR in the D plot was attributed to (1) a lower resistance to water transport in plants, which is necessary to maintain a high leaf water potential and high photosynthetic rate during the daytime and (2) delayed senescence. The plants in the D plot had a well developed root system, and had roots with high physiological activity represented by a large amount of exudation from the basal cut end of the stem. The development of physiological activity of the root system maybe reflected in higher capacity of root functions, the higher pod-flower set ratio and the delay in the senescence. Improved cultivation practices such as drainage during the rainy season and breeding of the plants with well-developed root system during the rainy season may be necessary to increase the yield of summer crops in Japan. Irrigation during the summer may not be so effective for the plants with a poorly developed root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号