首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant Production Science》2013,16(5):525-532
Abstract

Common buckwheat (Fagopyrum esculentum Moench cv. Shinano No.1) and Tartary buckwheat (F. tataricum (L.) Gaertn. cv. Nepal) were grown in pots to examine their responses to soil flooding. Flooding treatment was carried out during the early growth stage by completely submerging the pots in a nutrient solution from 12 to 36 days after sowing. The plant growth rate, relative growth rate and mean leaf area under the flooding treatment were reduced to 72, 90 and 83% of the control, respectively, in Shinano No.1, and to 29, 71 and 45% of the control, respectively, in Nepal. The excess moisture stress had no effect on the net assimilation rate (NAR) in Shinano No.1, but lowered the NAR to 68% of that in the control in Nepal. Excess moisture stress decreased the total leaf area to 76 and 34% of the control in Shinano No.1 and Nepal, respectively. Leaf growth rate, number of leaves and leaf area per leaf, which influenced the total leaf area, were reduced by the excess soil moisture. The relative water content of leaves was unchanged in Shinano No.1, but was decreased in Nepal. Reduction in bleeding from the cut end of stem due to flooding was greater in Nepal than in Shinano No.1. Excess moisture stress reduced the K+ concentration of the stem and increased the Na+ concentration of leaves, stem and roots more strongly in Nepal than in Shinano No.1. Development of adventitious roots in the surface layer of the nutrient solution was better in Shinano No.1 than in Nepal. In conclusion, Shinano No.1 (common buckwheat) had a stronger tolerance to excess soil moisture than Nepal (Tartary buckwheat). In Shinano No. 1, leaf growth and photosynthetic rate were not markedly affected and the capacity of absorbing water and nutrients was retained by developing adventitious roots in the solution above the surface of the soil keeping proper physiological activity under excess moisture conditions.  相似文献   

2.
为研究盐胁迫下小麦维持钾、钠平衡的生理机制,以耐盐小麦沧麦6005和盐敏感小麦矮抗58为材料,利用TEA、NEM、Ba(NO_3)_2三种药物分别抑制钾离子通道、钾载体及非选择性阳离子通道,测定正常及盐胁迫下小麦叶片K~+、Na~+含量,比较耐盐性不同的小麦品种在K~+、Na~+吸收中的差异。结果显示,盐胁迫下,沧麦6005和矮抗58叶片K~+含量下降,Na~+含量增加;沧麦6005叶片Na~+含量低于矮抗58,K~+/Na~+比值高于矮抗58。正常条件下,NEM、TEA处理均可降低沧麦6005和矮抗58叶片K~+含量,NEM处理较TEA处理效果更为明显;TEA处理显著降低了盐胁迫下矮抗58叶片K~+含量,而NEM处理则明显降低了盐胁迫下沧麦6005的叶片K~+含量;TEA、NEM、Ba(NO_3)_2处理降低了盐胁迫下矮抗58叶片Na~+含量,仅NEM处理降低了沧麦6005叶片Na~+含量。综上所述,正常条件下,钾载体是小麦K~+吸收的主要方式;盐胁迫下,耐盐品种和盐敏感品种K~+吸收途径不同,耐盐品种的NSCCs和钾离子通道具有更强的"拒钠"能力。  相似文献   

3.
《Plant Production Science》2013,16(4):475-480
Abstract

Buckwheat contains fagopyrin, which induces photosensitization in light-skinned livestock when exposed to sunlight. Here, we developed a high-performance liquid chromatography (HPLC) method to measure the fagopyrin content of buckwheat. The HPLC profile of the fagopyrin extract purified from Tartary buckwheat ‘Rotundatum’ had 3 apparent peaks. The ultraviolet-visible (UV-vis) absorption spectrum of each peak yielded absorbance maxima ( λmax) at 547 nm and 591 nm, indicating that these peaks corresponded to fagopyrin and unidentified fagopyrin derivatives. We considered the total content reflected by the 3 peaks to be the fagopyrin content of buckwheat. We determined the fagopyrin content in the leaves of Tartary buckwheat ‘Rotundatum’ and common buckwheat ‘Miyazakiootsubu’ both by UV-vis photometric analysis and the newly developed HPLC method. The fagopyrin content is overestimated by UV-vis photometry because the extracts contain a considerable amount of chlorophyll. Thus, HPLC analysis is more efficacious for fagopyrin-content measurements than UV-vis photometric analysis. The HPLC analysis of fagopyrin is easy, quick and efficacious for screening buckwheat varieties with trace or no fagopyrin. There are only a few reports on the accumulation sites of fagopyrin in buckwheat. We revealed that in Tartary and common buckwheat, fagopyrin is present mainly in the leaves and flowers and slightly in the stems, hulls, and groats. The fagopyrin contents of the leaves and flowers of Rotundatum were approximately 2.6 and 2.8 times higher than those in Miyazakiootsubu, respectively.  相似文献   

4.
Seabuckthorn (Hippophae rhamnoides L.) is uniquely capable of growing well under various extreme environmental conditions, such as water deficit, salt stress, low temperature, and high altitude. It is of economic value and its berries are used in cosmetics and pharmaceutical products. In this study, we compared the effects of salt stresses (9:1 molar ratio of NaCl to Na2SO4, pH 6.48–6.65) and alkali stresses (9:1 molar ratio of NaHCO3 to Na2CO3, pH 8.70–8.88) on the levels of inorganic ions and organic acids in H. rhamnoides L. to elucidate the physiological mechanism by which it tolerates salt or alkali stress (high pH). The results showed that, in leaves and stems under alkali stress, the Na+ content increased to a much greater extent than under salt stress. Neither salt nor alkali stress decreased the K+ content in leaves and stems; however, in roots, the K+ content decreased sharply with increasing alkali stress, whereas it remained relatively unchanged with increasing salt stress. This revealed a specific mechanism of absorption or transport for Na+ and K+ that was affected strongly by alkali stress. The results indicated that accumulation of organic acid (OA) was a central adaptive mechanism by which H. rhamnoides maintained intracellular ionic balance under alkali stress. OA may play different roles in different organs during adaptation to alkali stress, and its percentage contribution to total negative charge was higher in leaf than in stem. H. rhamnoides accumulated mainly malate, oxalate, and citrate in leaves and stems; however, in roots, less malate and citrate was accumulated, and acetate accumulation was enhanced significantly, which indicated that roots and shoots use different mechanisms to modulate OA metabolism.  相似文献   

5.
研究不同供磷水平对NaCl胁迫下玉米幼苗有机渗透调节物质和离子含量的影响。结果表明,盐胁迫下低磷处理玉米幼苗叶片中可溶性糖和游离氨基酸增加,根系中显著降低;增加供磷水平,叶片中可溶性糖和游离氨基酸含量下降,根系中含量上升,同时叶片和根系中可溶性蛋白含量增加。磷可降低盐胁迫下玉米幼苗各器官中的Na~+含量,同时增加各器官的K~+、Ca~(2+)和Mg~(2+)含量,降低Na~+/K~+与Na~+/Ca~(2+)比值。磷有助于维持植株的碳氮代谢平衡,促进有机渗透调节物质的运输与分配,改善各器官的离子平衡,增强植株的渗透调节能力,从而缓解盐胁迫带来的伤害。  相似文献   

6.
为明确菌肥和腐熟秸秆对盐碱地燕麦渗透生理及产量的调节作用,以燕麦品种白燕2号和草莜1号为材料,分析了菌肥(F)、腐熟秸秆(S)及二者配施(FS)对燕麦不同生育时期植株K+、Na+、可溶性糖、有机酸含量及株高和产量的影响。结果表明,苗期和拔节期燕麦各器官K+和Na+积累量较高,且茎和叶的K+、Na+积累量均明显高于根部。与空白对照(CK)相比,S和FS处理均显著提高各时期燕麦根、茎、叶K+含量,显著降低Na+含量。F、S和FS处理对各时期两个燕麦品种植株可溶性糖含量也有显著影响。F处理显著增加了抽穗期和灌浆期两个品种植株总有机酸含量,尤其是草酸、乙酸、柠檬酸比例提高;S和FS处理下抽穗期燕麦植株总有机酸含量在第一年较CK显著提高,而第二年显著降低,主要是由草酸变化引起。F、S及FS处理在第二年均显著提高两个品种的籽粒、鲜草和干草产量,其中FS处理的增产效果最好。这说明腐熟秸秆配施菌肥有助于增强盐碱地燕麦植株的渗透调...  相似文献   

7.
《Plant Production Science》2013,16(4):453-461
Abstract

Effects of NaCl on the growth, ion content, root cap structure and Casparian band development were examined in four rice (Oryza sativa L.) cultivars with different salt resistance (salt-sensitive indica-type IR 24 and japonica-type Nipponbare and salt-resistant indica-type Nona Bokra and Pokkali). Experiments were conducted to find the differences in salinity resistance during early seedling and developed seedling stages among the cultivars. For salinity treatment, sodium chloride (NaCl) was added to nutrient solution at concentrations of 0, 25 and 50 mM for 7 days from germination to the 7th day (early seedling stage) or from the 7th day to 14th day (developed seedling stage). Growth inhibition by salinity was more prominent in the early seedling stage than in the developed seedling stage. Based on the growth, the order of the sensitivity was IR24 > Nipponbare > Nona Bokra > Pokkali. The growth of NaCl-treated rice cultivars relative to control was significantly and negatively correlated with the Na+ content and Na+/K+ ratio in roots and shoots in both stages. Scanning electron microscopic observation revealed that the root cap tissues proliferated and extended to the basal part of the root tip by salinity. The length of root cap was, however, reduced by 50 mM NaCl in sensitive cultivars due to peeling off. An endodermal Casparian band was formed in the basal region of the root tip. Development of the Casparian band was more prominent in sensitive cultivars than in tolerant cultivars. Root cap proliferation might be related to NaCl resistance in rice seedlings, but the Casparian band may not function efficiently in Na+ exclusion. Essentially the present results suggest that exclusion of Na+ from roots plays a critical role in expression of Na+ resistance in rice seedlings and the root cap is important for Na+ exclusion.  相似文献   

8.
《Plant Production Science》2013,16(3):215-218
Abstract

Distribution of Na+ along the root axis under salinity stress was analyzed in two rice (Oryza sativa L.) cultivars with different salt resistance (salt-sensitive IR 24 and salt-resistant Pokkali). Rice plants were grown hydroponically and NaCl was applied with nutrient solution at concentrations of 0, 25 and 50 mM for 7 d after germination. The distribution of Na+ in roots under salinity was analyzed by the cryo time-of-flight secondary ion mass spectrometry (cryo TOF-SIMS). The Na+ content in the root was higher in salt-sensitive IR 24 than in salt-resistant Pokkali under NaCl stress. The content was highest at the root tip and was decreased basipetally along the root axis. The difference in Na+ content between the cultivars was apparent in all regions from the root tip.  相似文献   

9.
采用水培法研究外源硅对盐胁迫下玉米幼苗可溶性糖、游离氨基酸等渗透调节物质含量的影响。结果表明,盐胁迫下适量的增加硅供应能增加叶片和根系中渗透调节物质含量,其中根系中游离氨基酸、可溶性蛋白和可溶性糖含量的增加幅度大于叶片;同时能增加玉米幼苗各器官K+的含量,降低不同部位Na+含量,维持玉米幼苗体内的离子平衡。研究表明,硅参与盐胁迫下渗透调节物质在植物中的运输和分配,适宜浓度的硅能提高玉米耐盐性。  相似文献   

10.
Abstract

We Examined The Contribution of Polyphenols To The Antioxidative Activity In The Grains of Common Buckwheat “Hitachi Akisoba” (H) and “Kanto No.1” (K) and In Those of Tartary Buckwheat “Rotundatum” (R) and “Pontivy” (P). The Antioxidative Activity In The 80% Ethanol Extracts Was 16.4 and 15.3 ?Mol-Trolox G-1 Dw In H and K, Respectively, and 52.9 and 57.4 µMOL-TROLOX G-1 Dw In R and P, Respectively. These Extracts Were Analyzed By Hplc. In Common Buckwheat, (-)-Epicatechin, (-)-Epicatechingallate, and Rutin Were Confirmed. The (-)-Epicatechin Content Was 20.2 and 15.6 Mg 100 G-1 Dw, and Those of Rutin Were 13.6 and 12.2 Mg 100 G-1 Dw In H and K, Respectively. (-)-Epicatechin Accounted For About 13 and 11% of The Total Antioxidative Activity In H and K, Respectively, and Rutin About 2% In Both Varieties. Since Each Polyphenol Accounted For Only About One Fifth of The Total Antioxidative Activity, The Existence of Unknown Antioxidants Was Suggested. In Tartary Buckwheat, Rutin Quercitrin, and Quercetin Were Confirmed. The Rutin Content Was 1808.7 and 1853.8 Mg 100 G-1 Dw, In R and P, Respectively. Rutin Accounted For About 90 and 85% of The Total Antioxidative Activity In R and P, Respectively. Accordingly, Rutin Appears To Be The Major Antioxidant In Tartary BuckwheaT.  相似文献   

11.
玉米耐盐基因ZmHKT1;5在烟草中的功能验证   总被引:1,自引:0,他引:1  
HKT类基因是与植物耐盐性密切相关的一类基因。在作物中HKT蛋白可通过排出Na+来维持植物体内的Na~+/K~+平衡,从而影响植物耐盐性。通过在烟草中过表达玉米ZmHKT1;5基因,验证该基因具有提高植物耐盐性的作用。结果表明,过表达ZmHKT1;5基因的T0代材料即显示出叶片耐盐能力的明显提高;T2代转基因株系种子在含盐培养基上的发芽能力明显强于野生型材料,T2代转基因株系幼苗阶段的耐盐能力也得到了明显的提高。通过比较在盐胁迫后2月龄的转基因材料和野生型材料的生理指标,发现野生型材料中MDA和H_2O_2的含量相较转基因材料发生了更为明显的上升,说明转基因材料中过表达ZmHKT1;5基因有效降低了盐胁迫引起的过氧化物积累。综合转基因验证的结果,证明ZmHKT1;5基因具有提高植物耐盐性的作用。  相似文献   

12.
《Plant Production Science》2013,16(3):319-326
Abstract

We investigated the mechanisms of increased sensitivity to Na+ in the apical and basal regions of the rice leaf under salinity. Three-week-old plants were treated with 200 mM NaCl in hydroponic culture for 3 d. Segments 6 cm in length were obtained from the apical and basal regions of the fully expanded uppermost leaves (6th leaf blades) as old and young tissues, respectively. In the plants exposed to 200 mM NaCl, Nitro blue tetrazolium (NBT) reducing activity, and H2O2 and Malondialdehyde (MDA) contents significantly increased, accompanied by the swelling of thylakoids and destruction of thylakoid membranes in the apical regions. However, no indication of oxidative damages was observed in the basal region, even though the Na+ content in the basal region was comparable to that in the apical region. In the apical region, the capacity to scavenge H2O2 was lower than that in the basal region due to decrease in the constitutive levels of ascorbate peroxidase and guaiacol peroxidase. In addition, the activities of antioxidant enzymes except superoxide dismutase and guaiacol peroxidase decreased drastically after 48 hr of exposure to NaCl. By contrast, the activities of catalase and glutathione reductase in the basal region increased compared with those in the control, and other antioxidant enzymes did not decrease under salinity during the experimental period. These results suggest that the capacity to scavenge reactive oxygen species decreased with age, and thus the apical region of the leaf blade suffered severer damage by Na+ than the basal region.  相似文献   

13.
Genome duplication improves rice root resistance to salt stress   总被引:2,自引:0,他引:2  

Background

Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress.

Results

Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased.

Conclusions

Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots.  相似文献   

14.
Elevated Na+ levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Mechanisms of salinity tolerance in plants have been extensively studied and in the recent years these studies focus on the function of key enzymes and plant morphological traits. Here, we provide an updated overview of salt tolerant mechanisms in glycophytes with a particular interest in rice (Oryza sativa) plants. Protective mechanisms that prevent water loss due to the increased osmotic pressure, the development of Na+ toxicity on essential cellular metabolisms, and the movement of ions via the apoplastic pathway (i.e. apoplastic barriers) are described here in detail.  相似文献   

15.
Photosynthetic activity in C4 sugarcane has been suggested to be regulated by the demand for photoassimilate from sink tissues, including culm storage of sucrose and other components of the plant (e.g. roots and shoot primordia). This study examined the extent to which sink-demand influences leaf photosynthetic activity and controls leaf turnover in field-grown sugarcane. To increase sink-demand on selected leaves, plants were defoliated apart from the immature leaf before the first fully expanded leaf (2nd leaf) and the mature 8th leaf. Changes in leaf gas exchange and fluorescence characteristics were recorded for both leaves over a 28 d period. Variations in leaf and culm sucrose and hexose concentrations and allocation of 14C-labelled photosynthate were also measured. A decrease in culm internodal sucrose concentrations in partially defoliated plants was associated with significant increases in assimilation (A) and electron transport rates (ETR) for both leaves 2 and 8. Conversely, accumulation of sucrose in the culms of control plants was related to a decline in photosynthetic rates in leaf 8 during the treatment period. Leaves 2 and 8 of defoliated plants (27 d) were characterised by an increase in partitioning of 14C to mature and immature internodes, respectively, compared to control plants. In addition, hexose levels in leaves of defoliated plants decreased significantly (36% and 48% decrease in leaves 2 and 8, respectively) compared to corresponding leaves of untreated controls over the duration of the experiment, indicating that the signaling mechanisms regulating the decline in leaf photosynthetic activity are likely hexose-mediated. It was concluded that leaf physiological ageing in sugarcane was promoted by sucrose accumulation during culm maturation as a consequence of decreased sink-demand for photosynthate.  相似文献   

16.
利用隶属函数值法对玉米成熟期抗旱性的综合评价   总被引:1,自引:0,他引:1  
张会丽  许兴  朱林 《玉米科学》2017,25(4):32-39
以10个不同基因型玉米为试验材料,在宁夏中部干旱带,通过测定不同品种成熟期的K~+/Na~+、光合气体交换参数、农艺性状及产量性状等指标进行抗旱性鉴定,并利用主成分分析和隶属函数法对其抗旱性强弱进行综合评价。结果表明,干旱胁迫地和对照田中,各参试品种的光合特征参数、K~+/Na~+及形态性状等均有明显差异,且干旱胁迫条件下的净光合速率(P_n)、株高、产量均显著低于对照(P0.05)。同一品种不同器官的K~+/Na~+值表现为茎基茎叶根,表明植株体内的离子吸收和运输具有选择性,茎基具有贮存K~+的作用,根具有贮存Na~+的功能。不同基因型玉米品种的抗旱能力根据综合评价值(D值)大小,综合评价其抗旱性强弱顺序为A111-3/H242HoViY1北21/A58A3/A18高WY2宁3/1522H237/A18桂青贮1号H237/1506A3/A18。  相似文献   

17.
《Field Crops Research》2005,91(2-3):345-354
The performance of selected salt-tolerant genotypes of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], derived from field and in vitro assessment methods, was evaluated under greenhouse and field conditions. Eight durum wheat genotypes comprising three salt-tolerant genotypes and one salt-sensitive genotype selected from each of the methods were used. This study was conducted under both saline and non-saline field conditions as well as under greenhouse condition with salinized solution culture at 0 mM (control), 75 and 150 mM NaCl (concentrations) using supplemental Ca2+. Days to heading, days to maturity, plant height, number of grains per spike, grain weight per spike, 1000 grain weight, number of spikes per m2, grain yield and harvest index were recorded in the field experiments. Plant dry weight, Na+, K+ and Ca2+ accumulated in the hydroponically grown seedlings were measured 20 days after salinity treatments. In spite of the smaller range of genotypes used by the in vitro screening method, tolerant genotypes screened by the in vitro method (ITGs) performed comparably with those of the field-derived tolerant genotypes (FTGs) for grain yield under saline field conditions. Field salinity significantly reduced (P < 0.01) means of all traits averaged on eight tested genotypes. In vitro salt-tolerant genotypes Dipper-6 and Prion-1 produced the highest dry weight and K+/Na+ ratio under salt stress conditions (150 mM NaCl) in the greenhouse. Although dry matter correlated with the grain yield (R2 = 0.37), the regression coefficient was higher for shoot K+/Na+ ratio (R2 = 0.44). Dipper-6 (ITG) and Prion-1 (ITG) genotypes have been ranked superior while Massara-1 (ISG) was inferior for salt tolerance in the regression analysis. However, based on grain yield reduction Ajaia/Hora/Jro/3/Gan (FTG) and PI40100 (ITG) were the most tolerant having 58% and 60% reduction, respectively.  相似文献   

18.
ABSTRACT

Stem lodging can limit the grain yield of Tartary buckwheat (Fagopyrum tataricum), and creates difficulties in harvesting. A 2-year study was conducted to study the relationships between stem characteristics and lodging resistance in Tartary buckwheat. Six Tartary buckwheat cultivars with three stem types (short-stemmed XQ1 and CQ1; mid-length stemmed YQ1 and QK3; and tall-stemmed DAB and DN1) were used. The stem characteristics differed significantly among the three stem types. Mid-length stems had the thickest stem wall, the greatest numbers of large and small vascular bundles, and the lowest stem diameter/stem wall thickness ratio among the three stem types. Mid-length stems had the highest stem breaking strength (SBS) and stem puncture strength (SPS) among the three types of stem. The lignin content was significantly higher in mid-length stems than in tall and short stems. The activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and cinnamyl alcohol dehydrogenase (CAD), but not 4-coumarate: CoA ligase (4CL), differed significantly among the three stem types. In correlation analyses, SBS was significantly positively correlated with stem diameter, stem wall thickness, and the number of large and small vascular bundles, but significantly negatively correlated with stem diameter/stem wall thickness and lodging rate. The lignin content was significantly positively correlated with the activities of lignin-related enzymes and with SBS and SPS, and significantly negatively correlated with lodging rate. The present study provides preliminary insights into the relationship between stem traits and lodging resistance in Tartary buckwheat, laying a foundation for a further understanding of lodging resistance.  相似文献   

19.
A rapid quantification method for leaf sodium (Na+) and potassium (K+) concentrations was developed using a compact ion meter. Leaf ion concentrations were evaluated for species of Vigna vexillata (L.) A. Rich. after two weeks of treatment with 0–200 mM of sodium chloride. To compare the ion extraction efficiency, extraction solutions of distilled water and ammonium acetate were tested. The ion concentrations of extracts obtained by both solutions were measured using an ion meter, and the values were validated using ion chromatography. For both extraction solutions, the ion meter values were highly correlated with those of the ion chromatograph. However, correlations between ion meter and chromatograph values were largely different for Na+ and K+. The rapid quantification of ion concentrations using an ion meter developed in this study was successfully utilized for evaluating differences in leaf Na+ concentrations, K+ concentrations, and K+/Na+ ratio in species of V. vexillata.  相似文献   

20.
硅对NaCl胁迫下玉米幼苗生理特性的影响   总被引:2,自引:0,他引:2  
采用水培法研究盐胁迫下不同浓度硅对玉米幼苗生长、叶绿素含量、保护酶活性等生理特性的影响。结果表明,适量的硅(1mmol/L)能有效促进玉米生长,抑制叶绿素含量降低,降低细胞膜透性,提高玉米叶片和根系中的SOD、CAT和POD活性。叶片中SOD、CAT、POD活性均以Na2SiO3浓度为1mmol/L时活性最强;根系中三种酶活性以Na2SiO3浓度为2mmol/L时最强,表明硅对叶片和根系中的酶活性调控并非完全同步,也可能是硅在叶片和根系中作用途径不同所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号