首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This article summarizes current utilizations of wood cell wall components in relation to biorefinery of woody biomass as a separation method of its constituents. Especially, utilization of isolated lignins, involving transformation and molding, are demonstrated with respect to productions of carbon fibers and their further functionalization, such as developments of activated carbon fibers and electrodes for second battery and electric double-layer capacitor.  相似文献   

3.
New cell wall and cell lumen wood polymer composites   总被引:4,自引:1,他引:4  
Summary Furfuryl alcohol-based (FA) cell wall and methyl methacrylate-based (MMA) combination formulations were used to make wood polymer composites (WPC). Swelling gradients developed during preparation. Properties (density, hardness, water extractables, antiswell efficiency) gradients were observed along samples in 5 of the 7 treating formulations. Two cell wall treatments based on furfuryl alcohol did not show the gradients. The results suggest treating solution separations occurred during impregnation and the resulting nonhomogenious chemical produced the properties gradients. WPC made using the combination formulations based on MMA had properties which fell between cell wall and cell lumen formulations.It is gratefully acknowledged that Mr. Michel Andrew, Student Assistant, carried out the experiment part of this study  相似文献   

4.
All applications of wood involve drying the material from the green state. The cell wall may be viewed as a laminate consisting of different layers. The layers have different orientations and therefore different moisture expansion characteristics. As a result, stresses will develop in the layers due to drying. Micromechanical models for fibre composite materials were used in combination with a laminate analogy in order to calculate these drying stresses in the cell wall layers S1, S2 and S3. Resulting stresses were very high. In reality viscoelastic effects will significantly reduce stresses at high moisture content. However, at lower moisture content irreversible cell wall damage is likely to form as a result of the stresses computed by the model. Received 20 October 1998  相似文献   

5.
The amount of apparently nonfreezing water per dry mass unit significantly differs between earlywood and latewood, and drying changes the nonfreezing water content of earlywood cell walls in a time-dependent manner. However, the equilibrium moisture content of spruce wood is not affected by drying and rewetting. The results indicate that different mechanisms govern these two types of phase transformations of cell wall water. The nonfreezing water content, as determined using differential scanning calorimetry, appears to be a nonequilibrium property. It is hypothesized that the measured changes in nonfreezing water content mostly reflect changes in the porous cell wall structure, on a scale well above the molecular scale, rather than the abundance of chemical adsorption sites.  相似文献   

6.
The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study.  相似文献   

7.
This study examined the origin of the moisture dependency of the longitudinal Youngs modulus of wood (E L ) in relation to the microfibril angle (MFA) of the S2 layer of the secondary wall. Microtomed early wood specimen of sugi (Cryptomeria japonica D.Don) were used for the experiment. The following was revealed:
1.  E L tends to decrease as the moisture content increases in the region below the fiber saturation point (FSP).
2.  The percentage reduction of E L from the oven-dried state to the FSP is almost constant regardless of the MFA.
Subsequently, the relationship between E L and the moisture content was simulated theoretically using the simplified wood fiber model proposed in our previous paper (Part 1, 2002). The simulation considered the two hypotheses proposed in Part 1 for the origin of the moisture content dependency of E L . The first is a traditional theory that the reduction of E L is caused mainly by the moisture dependency of the lignin-hemicellulose matrix. The second assumes that an intermediate domain exists between the rigid crystal and the compliant disordered amorphous regions in wood cellulose microfibril (CMF). It is assumed that such a domain fluctuates between the rigid crystal-like and the compliant amorphous-like states at which the elastic modulus is of the same order as the lignin-hemicellulose matrix in accordance with the moisture sorption.When the first hypothesis is adopted for the simulation, the percentage reduction of E L from the oven-dried state to the FSP should increase as MFA increases; this was contradicted by the experimental results (2). On the other hand, when the second hypothesis is applied to the simulation, the experimentally obtained results (1) and (2) are simulated reasonably. This suggests that the moisture dependency of E L is controlled by the second hypothesis.  相似文献   

8.
9.
 To predict the origin of longitudinal elasticity of the solid wood in relation to the composite structure of the wood cell wall, an analytical procedure was developed on the basis of the idea of “the reinforced-matrix hypothesis” originally introduced by Barber and Meylan (1964). A multi-layered circular cylinder, having the CML, the S1, and the S2 layers, was used as a model of the ligno-cellulosic (wood) fiber, and the elastic properties of an isolated wood fiber were formulated mathematically. In the formulation, not only the structural factors, such as the microfibril angle and the thickness of each layer, but also the environmental condition, e.g. the moisture content, were taken into consideration. The effects of the moisture content and the microfibril angle upon the longitudinal Young's modulus and the Poisson's ratio of the wood fiber were simulated by using the newly derived formulae. It is anticipated to give a start to estimate the fine structure and the internal properties of the cell wall constituents in relation to the macroscopic behaviors of the wood through simulating the mechanical behaviors of the wood fiber. Received 17 August 1999  相似文献   

10.
Summary The longitudinal permeability of Abies grandis wood swollen to varying degree by water vapour sorption has been measured using a non-swelling liquid. The results obtained show that cell wall swelling causes a reversible decrease in permeability in both air dried and solvent exchange dried specimens.Direct microscopic measurements have shown that change in lumen diameter cannot explain the observed effect.Mathematical analysis of the data suggests that the permeability decrease may be due to increase in thickness of bordered pit membrane fibrils resulting from sorption of water.  相似文献   

11.
Summary Fast or abnormal (tumor) growth does not substantially affect wood substance and cell wall density. Consequently, void volume of dry cell walls is also not substantially affected.  相似文献   

12.
We investigated mechanical interactions between the cellulose microfibril and the matrix substance in wood cell walls. X-ray diffraction measurements showed that the peak positions of (200) and (004) from cellulose crystals in wood cell walls tended to shift lower and higher toward 2θ, respectively, during water desorption in wood. From our simulations, it is shown that the peak shift of (200) during water desorption is not due to changes in the scattering pattern of the amorphous substance or to lateral expansion of the cellulose crystals due to the Poisson effect in the cellulose microfibril, which is compressed in the molecular chain direction as the amorphous substance shrinks. This suggests that the cellulose microfibril expands transversely during water desorption in the wood cell wall, and that there is a mechanical interaction between the cellulose microfibril and the matrix substance.  相似文献   

13.
To investigate the influence of heating and drying history on the microstructure of dry wood, in addition to the dynamic viscoelastic properties, CO2 adsorption onto dry wood at ice.water temperature (273 K) was measured, and the micropore size distribution was obtained using the Horvath-Kawazoe (HK) method. Micropores smaller than 0.6 nm exist in the microstructures of dry wood, and they decreased with elevating out-gassing temperature and increased again after rewetting and drying. Dry wood subjected to higher temperatures showed larger dynamic elastic modulus (E′) and smaller loss modulus (E″). This is interpreted as the result of the modification at higher temperature of the instability caused by drying. Drying history influenced the number of micropores smaller than 0.6 nm in dry wood not subjected to high temperature, although the difference in the number of micropores resulting from the drying history decreased with increasing out-gassing temperature. A larger number of micropores smaller than 0.6 nm exist in the microstructure of dry wood in more unstable states, corresponding to smaller E′ and larger E″ than in the stable state. Consequently, unstable states are considered to result from the existence of temporary micropores in the microstructures of dry wood, probably in lignin. Part of this report was presented at the 55th Annual Meeting of the Japan Wood Research Society, Kyoto, March 2005, and at the 56th Annual Meeting of the Japan Wood Research Society, Akita, August 2006  相似文献   

14.
To investigate the changes in microstructures of wood with elapsed time in the environment, CO2 adsorption onto dry wood was measured at ice-water temperature (273 K) for samples aged from 0.1 years to over 1000 years. The micropore size distribution was obtained using the Horvath-Kawazoe method. Micropores smaller than 0.6 nm in wood decreased in number with elapsed time in the environment, and a negative correlation was found between cumulative pore volume for pores smaller than 0.6 nm and elapsed time in the environment. Cumulative pore volume in the 1000-year sample was almost half of that in the 0.1- year sample. Micropores smaller than 0.6 nm in wood with a few decades or more of elapsed time increased in number after rewetting and drying. Consequently, microstructures of wood with longer time elapsed in the environment were considered to be more stable, because of longer-term thermal motion and possibly more repeated moisture adsorption and desorption and/or temperature variation in the environment.  相似文献   

15.
Diffusion of non-swelling gases through dry conifer wood   总被引:2,自引:0,他引:2  
Summary The conditions under which mutual, Knudsen and transition-range diffusion occur are described, and the corresponding gaseous diffusion coefficients are stated. The coefficient of hindered diffusion through pit membrane pores is shown to be about one third of the mutual diffusion coefficient and not about one thirtieth as postulated by earlier workers. A new longitudinal diffusion equation is developed, and results of a new gas permeability technique are used to derive coefficients for Picea sitchensis and Abies grandis. Only a small proportion of the tracheids is assumed to be conducting, owing to pit aspiration. About 98% of the resistance to longitudinal diffusion is in the tracheid lumina, 1% in the pit apertures and 0.2% in the pit membrane pores. From similar considerations a new tangential diffusion equation is developed, and coefficients are calculated. Roughly 90% of the resistance to tangential diffusion occurs in the pit apertures, 10% in the pit membrane pores and only 0.3% in the tracheid lumina. The agreement between the theoretical and published experimental values is satisfactory. For tangential diffusion the agreement is closer by an order of magnitude than that obtained by earlier workers. The experimentally determined temperature dependence of the diffusion coefficients is shown to be consistent with the above results. A hindered diffusion coefficient of one thirtieth of the mutual coefficient would lead to a temperature dependence not observed experimentally.  相似文献   

16.
17.
We developed a novel method for preparation of microcasts of wood with silicone elastomer (polydimethylsiloxane; PDMS). PDMS was so flexible and elastic that it was possible to isolate the microcasts by simply pulling them out of the mold without digesting the cell wall after the resin was cured for 2 days at room temperature. The casts of some cell wall sculptures, such as spiral thickenings and bordered pits, had high fidelity. By contrast, the casts of distinctly bordered pits and tails of vessel elements were often deformed or broken. Bars of scalariform perforation plates were always torn and remained in the resin casts. The microcast preparation using PDMS is useful for easy investigation of cell wall sculptures. It might be also useful for microfractography of bars of scalariform perforation plates.  相似文献   

18.
To investigate in detail the mechanical interactions and associations between cellulose microfibrils (CMFs) and the matrix substance, we measured the dimensional changes in cellulose crystals in wood cell walls after different treatments. The transverse expansion of CMFs observed after hygrothermal treatment and subsequent drying suggests that the matrix substance compresses the CMFs transversely under green conditions. However, as heat treatment breaks or weakens the association of the CMFs and the matrix substance, under hygrothermal treatment and drying at high temperature the matrix substance cannot compress the CMFs in the direction of the chain.  相似文献   

19.
Drying of wood may lead to readily observable macroscale cracks. Recently observations were made indicating that also at the level of cell walls, damage occurs due to drying. A method is presented where green wood is impregnated using a solution of water and a bulking compound such as glycerol. Tensile strength parallel to the grain for wood impregnated in the green state was compared with that for ordinary dried wood and for wood impregnated after drying. Data demonstrate significantly higher strength for wood impregnated in the green state. It is postulated that this is due to damage in the cell walls of non-impregnated wood where the damage is induced by the drying stresses. Support for this hypothesis is also presented in the form of fractography results. For wood impregnated in the green state, damage development during drying is limited. This is because the impregnating chemical (glycerol in the present case) in the cell wall substitutes some of the moisture and therefore limits the drying stresses. Received 19 November 1999  相似文献   

20.
Summary The penetration of bulking chemicals (glycerol, PEG 200, PEG 1500 and pentaerythritol) into the cell wall of wood, Pinus sylvestris, has been studied. A number of different methods for determining the distribution of chemicals in the cell wall were used. Measurements of the increase in cell wall thickness showed that glycerol and PEG 200 resulted in greater cell wall bulking compared to PEG 1500 and pentaerythritol. Examination with SEM/EDS-linescan confirmed these results. However, the better resolution possible with the STEM/EDS-linescan revealed an inhomogenous distribution of the chemical in the cell wall. This is believed to be due to microcracks in the cell wall which are the result of the initial drying of the wood. This general damage to the cell wall could be the reason for the failure to find a stabilizing chemical and method. Received 10 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号