首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In our preceding study, we clarified that liquids having similar molecular sizes to ethanol were mainly adsorbed onto lignin among the major constituents of wood. This suggests that most micropores or adsorption sites loosely hydrogen-bonded to each other, which are accessible to these liquids, exist in lignin. In the present study, to examine micropores in wood and lignin, micropore distribution was measured by CO2 gas adsorption at ice-water temperature (273 K). Dry samples prepared by gradual delignification from wood meal were used as adsorbents. The pore-size distributions were determined by analyzing adsorption isotherms using the Horvath-Kawazoe method. It was found that the number of micropores decreased with the decrease in residual lignin, and micropores were hardly found in cellulose and hemicellulose. It is considered that most micropores smaller than 0.6 nm in wood exist in lignin.  相似文献   

2.
Influence of heating and drying history on micropores in dry wood   总被引:1,自引:1,他引:0  
To investigate the influence of heating and drying history on the microstructure of dry wood, in addition to the dynamic viscoelastic properties, CO2 adsorption onto dry wood at ice.water temperature (273 K) was measured, and the micropore size distribution was obtained using the Horvath-Kawazoe (HK) method. Micropores smaller than 0.6 nm exist in the microstructures of dry wood, and they decreased with elevating out-gassing temperature and increased again after rewetting and drying. Dry wood subjected to higher temperatures showed larger dynamic elastic modulus (E′) and smaller loss modulus (E″). This is interpreted as the result of the modification at higher temperature of the instability caused by drying. Drying history influenced the number of micropores smaller than 0.6 nm in dry wood not subjected to high temperature, although the difference in the number of micropores resulting from the drying history decreased with increasing out-gassing temperature. A larger number of micropores smaller than 0.6 nm exist in the microstructure of dry wood in more unstable states, corresponding to smaller E′ and larger E″ than in the stable state. Consequently, unstable states are considered to result from the existence of temporary micropores in the microstructures of dry wood, probably in lignin. Part of this report was presented at the 55th Annual Meeting of the Japan Wood Research Society, Kyoto, March 2005, and at the 56th Annual Meeting of the Japan Wood Research Society, Akita, August 2006  相似文献   

3.
To investigate the changes in microstructures of wood with elapsed time in the environment, CO2 adsorption onto dry wood was measured at ice-water temperature (273 K) for samples aged from 0.1 years to over 1000 years. The micropore size distribution was obtained using the Horvath-Kawazoe method. Micropores smaller than 0.6 nm in wood decreased in number with elapsed time in the environment, and a negative correlation was found between cumulative pore volume for pores smaller than 0.6 nm and elapsed time in the environment. Cumulative pore volume in the 1000-year sample was almost half of that in the 0.1- year sample. Micropores smaller than 0.6 nm in wood with a few decades or more of elapsed time increased in number after rewetting and drying. Consequently, microstructures of wood with longer time elapsed in the environment were considered to be more stable, because of longer-term thermal motion and possibly more repeated moisture adsorption and desorption and/or temperature variation in the environment.  相似文献   

4.
The adsorption properties of wood carbonized at various temperatures were investigated using a mixed gas containing toluene and α-pinene. Hinoki (Chamaecyparis obtusa) samples carbonized at 500°–1100°C were exposed to gas mixtures of toluene and α-pinene at 20°C. The samples carbonized at 500°–700°C only adsorbed toluene, whereas those carbonized at 800°–1100°C adsorbed both toluene and α-pinene. Analysis of the surface structure of the carbonized wood by nitrogen adsorption at liquid nitrogen temperature indicated that the sample carbonized at 700°C had micropores mainly 0.6 nm in diameter and few mesopores, whereas the samples carbonized at 900°C and 1100°C had mesopores and micropores larger than 0.8 nm in diameter. With the sample carbonized at 700°C, the flat-shaped toluene molecules could probably penetrate into the narrower pores, 0.8 nm in diameter, whereas the bulky globular-shaped α-pinene molecules could not. Carbonization at temperatures higher than 900°C probably enlarged the pore size and thereby reduced the selectivity of adsorption. The results revealed that wood carbonized below activation temperature has a unique flat-pore structure that seems to work as a kind of molecular sieving carbon, successfully removing only the harmful volatile organic compound (VOC), toluene, and leaving behind a pleasant aroma of α-pinene in the atmosphere.  相似文献   

5.
The chemical structures of hemicellulose and lignin are different for two distinct types of wood, i.e., softwood and hardwood. Such differences are expected to affect pyrolysis behavior. In this article, the differences are discussed for Japanese cedar wood (a softwood) and Japanese beech wood (a hardwood) pyrolyzed in a closed ampoule reactor (N2/600°C/40–600 s). Oven-dried samples were used to eliminate the influence of initial water. Demineralized samples (prepared by acid washing) were also used to determine the influence of the minerals contained in the wood samples. As a result, some features were disclosed for secondary char (coke) formation, char reactivity, tar formation, and subsequent decomposition.  相似文献   

6.
Summary Ezo spruce (Picea jezoensis) wood meal and milled wood lignin were successively reduced with sodium borohydride, methylated with methanol-HCl, oxidized with Fremy's salt, reduced with sodium dithionite, and methylated with diazomethane. Permanganate oxidation of the treated milled wood lignin showed that 0.08–0.1/C9 units of 3,4,5-trimethoxyphenyl groups were introduced into the softwood lignin. Although hardwood meal (beech, Fagus crenata) methylated with diazomethane gave a purple-red colour with the Mäule test, the treated softwood meal gave only a dark brown colour. The aromatic nuclei of lignin were broken down by the Mäule treatment. The consumption of permanganate by treated softwood lignin was higher than by hardwood lignin, which suggests that the guaiacyl nuclei were broken down severely. It is proposed that the purple-red colour obtained from methylated hardwood lignin with the Mäule colour test is generated by reaction of syringyl groups which were liberated by -ether cleavage under the permanganate oxidation conditions.  相似文献   

7.
Amphiphobic wood has successfully been fabricated using a combination of O2 plasma surface activation and coating of pre-hydrolyzed methyltrimethoxysilane (MTMS). The effect of O2 plasma activation on surface chemistry and surface roughness was investigated using X-ray photoelectron spectroscopy and laser scanning confocal microscope profilometry, respectively. Pre-hydrolyzed MTMS was used to impart oleophobicity to both softwood and hardwood samples with tunable hydrophilicity by adjusting the sonication time during pre-hydrolysis. Depending on hydrolysis time, the coated wood samples display wetting behavior ranging from superhydrophilic/oleophobic (immediate water absorption; motor oil contact angles 63.5° for hardwood and 62.4° for softwood) to amphiphobic (water contact angles 104.3° for hardwood and 91.1° for softwood; motor oil contact angles 68.7° for hardwood and 63.9° for softwood), without affecting visual appearance of the wood. For all plasma-activated MTMS-coated wood samples, no absorption of motor oil is observed for several months, indicating stable oil resistance. The intrinsic porosity of wood is also partially retained after coating.  相似文献   

8.
Summary The phenolic hydroxyl group content of wood lignin has been determined in situ by a periodate oxidation method for four softwood and six hardwood species. Hardwood lignins, in contrast to softwood lignins, showed a significant variation among different species in this functional group content which decreased with an increase in the proportion of syringyl units in the wood lignin.Financial support from the Empire State Paper Research Associates is greatly appreciated  相似文献   

9.
Summary Periodate oxidation, because of its high selectivity in degrading phenolic nuclei, has been combined with nitrobenzene oxidation and phenyl nucleus exchange techniques to investigate the nature of wood lignin in situ. For both softwood and hardwood, the phenolic and etherified components of wood lignin have been shown to differ significantly in chemical composition, and the etherified lignin structure appears to be substantially more condensed.Financial support from the Empire State Paper Research Associate (ESPRA) and by the NRICGP of USDA (No. 93-37103-9318) is greatly appreciated  相似文献   

10.
Summary The prolysis of cellulose, hemicelluloses, lignin preparations, and wood was studied by differential calorimetric analysis (DCA) for the range of 25° to 800° C. The test samples included powdered and filter paper celluloses; hardwood xylan; softwood galactoglucomannans, compression wood galactan, and arabinogalactan; a synthetic (DHP), sulfuric acid, Björkman, Brownell, and cellulase lignins; and unextracted and extracted hardwoods and softwoods. Heats of reaction were determined from the DCA thermal transition areas. Distinct differences were found between the thermograms of each hemicellulose and lignin sample. Although wood species could not be separated thermally, hardwood and softwood thermograms differed because of the hemicellulose degradation pattern.Trade names and company names are included for the benefit of the reader and do not imply any endorsement or preferential treatment of the product by the U.S. Department of Agriculture.Formerly Research Technologist, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture. The Laboratory is maintained at Madison, Wis. 53705, in cooperation with the University of Wisconsin. Present address: The Pennsylvania State University, University Park, Pennsylvania 16802.  相似文献   

11.
This study investigated the anatomical and chemical characteristics of the reaction wood of a gymnpsperm species, Gnetum gnemon, and discussed on contributing factor for the type of reaction wood in this species. Cell morphology, microfibril angle (MFA) of the S2 layer and lignin distribution in secondary walls of tracheary elements, and lignin content were examined on three branches. Observations included no G-layer formation, significant decreases in vessel frequency, and altered MFA, and visible-light absorbance after lignin colour reactions in tracheid and fiber tracheid walls on the upper side in almost all samples. These results suggest that reaction wood in G. gnemon was similar to that in ‘tension-wood-like-reaction wood’ in angiosperms. On the other hand, reaction wood showed decrease in the lignin concentration in the fiber tracheid walls compared to the tracheid walls. In addition, the lignin in the tracheid and fiber tracheid walls was originally rich in syringyl units, suggesting that changes in the anatomical and chemical characteristics of secondary xylem due to reaction wood formation might relate to the ratio of the syringyl to guaiacyl units in lignin in the cell walls which function for mechanical support.  相似文献   

12.
The organization of wood cell wall components involves aggregates of cellulose microfibrils and matrix known as macrofibrils. A combination of field emission electron microscopy and environmental scanning electron microscopy was used to visualise the organization of macrofibrils in different cell wall types comparing normal and reaction wood of radiata pine and poplar as examples of a typical softwood and hardwood. The size of macrofibrils is shown to vary among cell wall types with the smallest structures occurring in the gelatinous layer of tension wood (14 nm) and the largest structures in the S2L layer of compression wood (23 nm). A positive correlation between macrofibril size and degree of lignification is observed, with macrofibrils apparently increasing in size in more highly lignified cell wall types. The fibrillar structure of the secondary wall varies from microfibril-sized structures of 3–4 nm up to large aggregates of 60 nm diameter. The size of macrofibrils also varies slightly among adjacent cells of the same cell wall type. Macrofibrils occur predominantly in a random arrangement, although radial and tangential lamellae may sometimes be seen in individual cells.
Lloyd DonaldsonEmail:
  相似文献   

13.
Physical, chemical, and biological properties of wood depend largely on the properties of cellulose, noncellulosic polysaccharides, and lignin, and their assembly mode in the cell wall. Information on the assembly mode in the main part of the ginkgo tracheid wall (middle layer of secondary wall, S2) was drawn from the combined results obtained by physical and chemical analyses of the mechanically isolated S2 and by observation under scanning electron microscopy. A schematic model was tentatively proposed as a basic assembly mode of cell wall polymers in the softwood tracheid as follows: a bundle of cellulose microfibrils (CMFs) consisting of about 430 cellulose chains is surrounded by bead-like tubular hemicellulose-lignin modules (HLM), which keep the CMF bundles equidistant from each other. The length of one tubular module along the CMF bundle is about 16 ± 2 nm, and the thickness at its side is about 3–4 nm. In S2, hemicelluloses are distributed in a longitudinal direction along the CMF bundle and in tangential and radial directions perpendicular to the CMF bundle so that they are aligned in the lamellae of tangential and radial directions with regard to the cell wall. One HLM contains about 7000 C6-C3 units of lignin, and 4000 hexose and 2000 pentose units of hemicellulose.  相似文献   

14.
To expand the utilization of waste newspapers and lignin, activated carbon (AC) sheets, as an example of AC moldings, were prepared from those mixtures. The isolated lignins used were softwood and hardwood acetic acid lignins (SAL and HAL), softwood kraft lignin (KL), and wheat-straw lignin (WSL). The mixtures were molded into precursory sheets by thermal compression and then converted to AC sheets by carbonization and steam activation. The flexural strength of the precursory sheets was dramatically improved by additing the lignins compared to that of sheets without lignin. The strength of several sheets was more than 25 MPa. This suggested that lignins act as adhesives. SAL and HAL sheets with 40% newspaper were strengthened by the carbonization, whereas the strength of other lignin sheets was depressed. Finally, the AL-based AC sheets showed higher flexural strength (>6MPa) than others. Most of the AC sheets had adsorption ability comparable to that of commercially available AC powder and granules. The capacities were almost independent of paper content. Among the AC moldings tested, the AL-based AC sheets showed the fastest adsorption top-chlorophenol. Thus, viable AC moldings can be prepared from lignin-wastepaper mixtures, particularly SAL and HAL.  相似文献   

15.
Softwood (Cryptomeria japonica) and hardwood (Fagus crenata) were treated in supercritical water (380°C, 100 MPa) for 8 s. The treated woods were fractionated to the water-soluble portion, methanol-soluble portion, and methanol-insoluble residues. For the methanol-soluble portion, which mainly consisted of lignin-derived products, gel permeation chromatography (GPC) and gas chromatographic-mass spectrometric (GC-MS) analyses were conducted to clarify the molecular weight distribution and to identify the monomeric products, respectively. GPC analysis revealed that the methanol-soluble portion contains monomeric and some oligomeric products. GC-MS analysis identified 19 guaiacyl compounds in the methanol-soluble portion from softwood, and 15 syringyl monomeric compounds in the methanol-soluble portion from hardwood. The structures of identified products included not only phenyl propane (C6—C3) units but also C6—C2 and C6—C1 units. In addition, the infrared spectra suggested that the methanol-soluble portion maintains the typical structure of lignin, although it is rich in condensed-type linkages with some changes in the propyl side chain. These results indicate that the supercritical water treatment cleaves not only ether linkages but also part of the propyl chains in lignin to give various aromatic compounds.  相似文献   

16.
Summary The ultrastructure of steam-exploded wood from the softwood Pinus radiata D. Don was examined by electron microscopy in order to determine the reasons for increased porosity and enhanced susceptibility to enzymatic hydrolysis. Ultrastructural changes were observed in the form of lignin redistribution and swelling of the cellulose framework. Lignin showed evidence of melting, having contracted into well defined agglomerates suspended in a web of cellulose. Using lanthanum and gold tracers of known particle size the pores in the microfibrillar cell wall have been examined. Cellulose regions were shown to contain numerous pores greater than 2 nm, while lignin agglomerates did not contain such pores. Treatment with NaOH resulted in lignin being smeared over the porous cell wall material — hence blocking pores and reducing digestibility.The authors gratefully acknowledge the assistance of T. A. Clark and K. F. Deverell during the course of this work  相似文献   

17.
Summary Anatomical features of reaction wood formed in two Magnolia species, M. obovata Thunb. and M. kobus DC. which are considered to be among the primitive angiosperms, were observed. In addition, the distribution of guaiacyl and syringyl units of lignins in the cell walls of normal and reaction wood was examined using ultraviolet (UV)- and visible light (VL)- microspectrophotometry coupled with the Wiesner and M?ule reactions. The two Magnolia species formed a tension-like reaction wood without possessing the typical gelatinous layer (G-layer) on the upper side of the inclined stem or branch, in which a radial growth promotion occurred. Compared with the normal wood, the reaction wood had the following anatomical features: (1) the secondary walls of fiber tracheids lacked the S3 layer, (2) the innermost layer of fiber-tracheid walls showed a small microfibril angle, a fact being similar to the orientation of the microfibril angle of the G-layer in tension wood, and (3) the amounts of lignin decreased in the cell walls of fiber tracheids, especially with great decrease in proportion of guaiacyl units in lignins. In addition, VL-microspectrophotometry coupled with the Wiesner and M?ule reactions adopted in the present study showed potential to estimate the lignin contents in the cell walls and the proportion of guaiacyl and syringyl units in lignins. Received: 15 July 1998  相似文献   

18.
Summary There is evidence showing that lignification causes both an increase in the thickness of the walls, and changes in the overall width or circumference of wood cells. Although data are not available on changes in length during lignification, it can be deduced that these must also tend to occur. As lignin occupies sites in the cell walls corresponding to those occupied by water, the theory of anisotropic shrinkage of wood may be used to predict the proportional dimensional changes tending to occur as each wall layer in a compression wood cell is lignified. Taking account of the microfibril angles in those layers, it is shown that if the angle for S2 is more than about 45°, inevitably S2 will tend to develop deep helical fissures or splits of the form of those reported in the literature.  相似文献   

19.
To clarify the behavior of whole lignins in wood cell walls during alkaline nitrobenzene oxidation, the delignification process from cell walls in normal and compression woods of Chamaecyparis obtusa Endl. (Cupressaceae) was observed using ultraviolet and transmission electron microscopies. The lignin content conspicuously decreased to around 10% after 35min in normal wood. The lignin content in compression wood finally leveled off at aroumd 10% after 50min. In gel filtration of oxidation products in ethyl acetate, a high molecular weight fraction was prominent in extracts from the early stage of the reaction. As the oxidation progressed, the high molecular weight fraction became less prominent in both normal and compression wood. Changes in the weights of cell wall residues during reaction indicated that approximately half of the components other than lignin were also removed from the cell walls. This shows that the majority of lignin with relatively high molecular weight is removed from the cell walls together with polysaccharides in the early stage of the reaction and that further oxidative degradation occurs in solution in later stages. Only a small amount of the lignin with low molecular weight could be analyzed by gas chromatography.Parts of this report were presented at the 47th (Kochi, April 1997) and 48th (Shizuoka, April 1998) Annual Meetings of the Japan Wood Research Society, and at the Lignin Symposium, Sapporo, October 1997  相似文献   

20.
Chemical components are the main factors affecting the mechanical properties of wood fibers. Lignin is one of the main components of wood cell walls and has a critical effect on the mechanical properties of paper pulp and wood fiber based composites. In this study, we carried out tensile tests on single mature latewood tracheids of Chinese fir (Cunninghamia lanciolata (Lamb.) Hook.), using three different delignified treatment methods to obtain different amounts of lignin. We applied single fiber tests to study the effect of the amount of lignin on mechanical tensile properties of single wood fibers at the cellular level. The results show that in their dry state, the modulus of elasticity of single fibers decreased with the reduction in the amount of lignin; even their absolute values were not high. The amount of lignin affects the tensile strength and elongation of single fibers considerably. Tensile strength and elongation of single fibers increase with a reduction in the amount of lignin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号