首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
近年来,大气氮沉降日益增加,已对森林生态系统产生了不可忽视的影响,而土壤酶活性反映了土壤肥力及土壤环境质量,因而可以用来评价氮沉降对森林土壤造成的影响。关于氮沉降对森林生态系统酶活性的影响已开展了一系列的研究,然而尚缺少系统总结。文中从森林土壤酶种类和林分类型角度总结了氮沉降对土壤酶活性的影响,并从氮沉降水平、氮种类形态、氮沉降与环境的交互作用等方面探讨了土壤酶活性对氮沉降的响应机制,提出未来研究热点是氮沉降对不同类型的森林土壤酶影响、不同森林类型土壤酶的氮沉降临界值、氮沉降对土壤酶活性影响的长期定位研究以及氮沉降与CO2浓度、温度、降雨、磷添加的交互作用对土壤酶活性影响,以期为未来森林土壤管理提供参考。  相似文献   

2.
[目的]探究陕北黄土丘陵区退耕还林后不同林龄中国沙棘林可溶性氮组分累积的季节变化和垂直分布规律,为深入研究该区域不同恢复年限中国沙棘林的退耕效果评价和土壤氮库管理提供理论依据。[方法]以志丹县金丁镇不同恢复年限(5、15、20 a)中国沙棘人工林为研究对象,以荒草地为对照,采集0~10、10~20、20~30 cm土壤样品,分析土壤可溶性氮组分含量和比例的季节动态变化及土壤垂直分布的动态变化。[结果]随着恢复年限的延长,中国沙棘人工林均增加了土壤可溶性氮组分含量,对于土壤硝态氮和可溶性有机氮(SON)而言,20 a与5 a中国沙棘人工林间差异显著,荒草地与5 a中国沙棘林间无显著差异;土壤铵态氮在不同恢复年限间差异不显著。不同恢复年限中国沙棘林土壤硝态氮和SON变化趋势一致,均为20a中国沙棘林>15 a中国沙棘林>荒草地>5 a中国沙棘林,且均呈表聚现象。土壤铵态氮含量大小关系为15a中国沙棘林>20 a中国沙棘林>5 a中国沙棘林>荒草地,表层的铵态氮平均含量最低。土壤可溶性氮组分在不同土层间均差异不显著。土壤硝态氮表现为夏季最高,冬季或秋季最低...  相似文献   

3.
【目的】研究地上枯落物和地下根系在土壤碳氮循环中的作用,为提高滨海沙地人工林土壤碳氮保留能力提供科学依据,为促进沿海地区人工林可持续经营提供启示。【方法】以福建长乐滨海沙地2种典型人工林(湿地松和尾巨桉)为研究对象,设置去除根系、去除枯落物以及对照3种处理,1 a后采集土壤样品,测定土壤碳氮及其组分。【结果】滨海沙地湿地松林和尾巨桉林碳氮储量差异不明显,去除地上枯落物使尾巨桉林土壤可溶性有机碳含量显著下降,去除地下根系使湿地松林土壤可溶性有机氮含量显著上升,去除根系或枯落物处理均降低了2种人工林土壤微生物有机碳和微生物有机氮含量,湿地松人工林去除根系或枯落物后土壤矿质氮含量均有所升高,尾巨桉人工林则与之相反。回归分析表明不同碳输入下土壤DOC与DON、MBC、MBN之间存在极显著正相关关系,与土壤NO3--N之间存在显著正相关关系,土壤MBC与土壤NH4+-N、NO3<...  相似文献   

4.
【目的】研究大兴安岭地区樟子松天然林土壤的碳氮含量与水解酶活性的坡位差异和月份动态,探究土壤碳氮含量与水解酶活性的关系,以期为阐明土壤碳氮转化酶学机制及森林土壤可持续利用提供理论依据。【方法】2018年5—10月每月中旬,在大兴安岭漠河地区樟子松天然林坡地设置试验地。分别在试验地上、中、下坡位各设置3块20 m×30 m的樟子松林试验样地,每样地选3个取样点,每取样点清除枯枝落叶层后,记录不同土深(2.5、7.5、15、25 cm)处土壤温度。同时采集每个取样点不同土层(0~5、5~10、10~20和20~30 cm)的土壤样品测定土壤含水率、碳氮含量(有机碳、全氮)及水解酶(脲酶、蛋白酶、蔗糖酶、纤维素酶)活性。【结果】土壤的有机碳及全氮含量随土层加深而降低,随坡位升高而减少,但坡位差异不显著(P0.05);0~5、5~10、10~20和20~30cm土层的有机碳含量分别为68.53~80.38、40.28~46.66、15.86~21.08和11.91~13.79 g·kg~(-1),土壤全氮含量分别为5.34~5.96、2.98~3.68、2.35~2.61和1.54~1.75 g·kg~(-1);土壤脲酶、蛋白酶、蔗糖酶及纤维素酶活性随土层加深而降低;随坡位降低,土壤脲酶及蔗糖酶活性增高,蛋白酶与纤维素酶活性降低;月动态分析显示,土壤有机碳和全氮含量高峰期均为9月,酶活性高峰期集中在7—8月;相关分析表明,土壤碳氮(有机碳、全氮)含量与水解酶(脲酶、蔗糖酶、纤维素酶、蛋白酶)活性和含水率均极显著正相关(P0.01),土壤温度与有机碳含量显著正相关(P0.05)、与全氮含量显著负相关(P0.05)。【结论】大兴安岭地区樟子松天然林土壤碳氮含量与水解酶活性随土层加深而降低,土壤碳氮含量与酶活性的坡位差异不显著(P0.05),有机碳和全氮含量高峰期为9月,土壤水解酶活性高峰期集中在7—8月。土壤碳氮含量与水解酶活性极显著相关(P0.01),土壤温湿度对碳氮含量与酶活性具有显著影响(P0.05)。  相似文献   

5.
内蒙古鄂尔多斯地区四个植物群落类型的土壤碳氮特征   总被引:18,自引:0,他引:18  
对内蒙古鄂尔多斯地区本氏针茅、油蒿、牛心朴子和严重退化地等四种主要植物群落类型土壤碳氮特征进行了研究。结果表明 :各群落类型土壤 0~ 1 0、1 0~ 30和 30~ 6 0cm层次有机碳含量的季节变化多不明显 ;不同群落 0~ 1 0和 1 0~ 30cm层土壤全氮含量的季节变化多表现出显著水平 ,基本表现为 5月明显高于 7月和 9月 ,而 7月和 9月的含量相差不大 ;各群落类型 0~ 1 0cm层土壤硝态氮有显著的季节变化 ,5月明显大于 7月和 9月 ;不同群落各层土壤铵态氮的季节变化均达到极显著水平 ,表现为 5月 >7月 >9月。有机碳和全氮含量在不同季节各群落土壤中的垂直分布规律比较一致 ,即 0~ 1 0cm >1 0~ 30cm >30~ 6 0cm ;不同季节各群落类型土壤硝态氮含量垂直规律不明显 ,仅 5月 0~ 1 0cm层的含量明显大于其它层次 ;不同季节各群落土壤的铵态氮没有垂直分布规律。虽然不同季节各土层有机碳含量的群落间差异有些已达到显著水平 ,0~ 1 0cm层土壤的全氮含量在群落间多表现出显著差异 ,各土层硝态氮和铵态氮含量 5月和 7月的群落间差异更是达到极显著水平 ,但这些差异在群落间没有明显的规律性。  相似文献   

6.
[目的]为了解森林土壤氮素转化特征及土壤氮供应能力,为森林生态系统合理经营管理提供科学依据。[方法]以东北寒温带人工红松针叶林和天然次生阔叶混交林表层土壤为研究对象开展室内培养试验,采用15N同位素成对标记技术和FLUAZ数值优化模型,研究不同深度的土壤氮初级转化速率特征。[结果]林地土壤的氮初级转化速率受林型、土壤深度及二者间交互作用的影响。人工红松针叶林土壤氮初级矿化速率和无机氮固定速率显著低于天然次生阔叶混交林土壤,而初级硝化速率显著高于天然次生阔叶混交林土壤,2个林型土壤的氮初级转化速率都随着土壤深度的增加显著降低。土壤氮初级矿化速率和固定速率与土壤pH、有机碳、水溶性有机碳与水溶性有机氮含量呈显著正相关,土壤初级硝化速率与土壤pH呈显著负相关。人工红松针叶林土壤初级硝化速率与铵态氮固定速率比值显著高于天然次生阔叶混交林土壤,而对硝态氮的固定速率显著低于天然次生阔叶混交林土壤。[结论]2种林型土壤氮素转化特征差异明显,人工红松针叶林土壤的硝态氮产生能力较强而无机氮固持能力较弱,容易发生硝态氮的淋溶风险,天然次生阔叶混交林土壤氮矿化-固定过程耦合较好且硝化作...  相似文献   

7.
土壤在调节地球气候和物质循环方面起着重要作用,但是由于人为因素的影响,不当的土地经营模式(如居民用地、农业耕地、毁林开荒)对土壤质量产生了深刻影响,使土壤质量发生变化。本研究对黑龙江省尚志市帽儿山林场的4种不同的土地利用与经营模式(森林土壤、农田土壤、场部用地和森林迹地)下的土壤理化性质和土壤酶活性进行测定与分析,探讨不同土地利用模式对其土壤理化与土壤酶学特性的影响。研究发现4种土壤类型的10个采样点的10个土壤理化指标和5个土壤酶活性指标间存在显著差异,土壤质量从高到低依次为:森林土壤,森林迹地,林场场部用地,农田用地。相关分析表明土壤脲酶和过氧化氢酶与土壤含水量、土壤全氮、土壤全碳、土壤有机碳、可溶性全碳和可溶性有机碳含量之间成显著正相关;多酚氧化酶与土壤pH成显著正相关。因此,不同土地利用方式对土壤理化性质和土壤酶活性产生显著影响。  相似文献   

8.
采用完全随机试验设计,分析邓恩桉人工林幼龄林土壤有机质和全氮含量与氮沉降之间的关系。试验结果表明,氮沉降可以显著减少森林土壤的有机质含量;同时又可以显著地增加森林土壤全氮的含量。  相似文献   

9.
森林土壤碳氮过程研究现状和展望   总被引:6,自引:0,他引:6  
土壤是碳和氮的重要贮存库,土壤碳氮转化是陆地上最为重要的生态系统过程之一。森林土壤中碳、氮过程是森林生态系统中物质循环与能量交换的关键。森林凋落物的分解、森林土壤碳氮的矿化是森林土壤最主要的碳氮过程。在微生物作用下,土壤与大气交换含碳氮物质,则是土壤碳氮过程的直接反应,也是影响尹土壤碳氮过程和土壤碳氮库动态的主要方面。然而。从大尺度上探讨森林植被恢复过程中土壤碳氮过程的分异机理,研究典型植物群落土壤碳氮过程特征及探索森林土壤碳氮过程与植被的互动机制及关键植物种君l对土壤碳氮过程的影响,研究土壤碳氮过程有关的土壤微生物和土壤酶及其与全球变化的关系等内容还未见报道,认为这些内容将是未来的研究重点。同时,随着科学技术的发展,各种新的技术如3S技术和电子午专感器技术等将会很快应用于森林土壤碳氮过程的研究。  相似文献   

10.
森林土壤有机碳分布及碳储量特征是研究森林生态系统碳循环的基础。采用不同林型土壤样品室内分析方法,研究了罗浮山5种不同林型土壤中有机碳、碳储量分布特征及其与其他土壤理化性状关系。结果表明:保护区的土壤有机碳储量随海拔高度增加而降低,其中,华润楠-密花树常绿阔叶林的土壤有机碳储量最高,马尾松+木荷针阔混交林、黄樟+华润楠+青冈常绿阔叶林的土壤有机碳储量最低;各林型土壤有机碳与土壤容重、土壤的pH值呈显著负相关,与全氮、全磷呈显著正相关。  相似文献   

11.
The effects of three common tree species - Scots pine, Norway spruce and silver birch - on leaching of dissolved organic carbon and dissolved nitrogen were studied in an experimental forest with podzolised soils in southern Sweden. We analyzed soil water collected with lysimeters and modeled water fluxes to estimate dissolved C and N fluxes. Specific UV absorbance (SUVA) was analyzed to get information about the quality of dissolved organic matter leached from the different stands. Under the O horizon, DOC concentrations and fluxes in the birch stands were lower than in the spruce and pine stands; annual fluxes were 21 g m−2 y−1 for birch and 38 g m−2 y−1 and 37 g C m−2 y−1 for spruce and pine, respectively. Under the B horizon, annual fluxes for all tree species ranged between 3 and 5 g C m−2 y−1, implying greater loss of DOC in the mineral soil in the coniferous stands than in the birch stands. We did not find any effect of tree species on the quality of the dissolved organic matter, as measured by SUVA, indicating that the chemical composition of the organic matter was similar in leachates from all three tree species. Substantial amounts of nitrogen was leached out of the soil profile at the bottom of the B horizon from the pine and birch stands, whereas the spruce stands seemed to retain most of the nitrogen in the soil. These differences in N leaching have implications for soil N budgets.  相似文献   

12.
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing'an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory using ~(15)N tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH_4~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO_3~-) was primarily produced via oxidation of NH_4~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO_3~- consumption rates,resulting in a build-up of NO_3~-, which highlights the high risk of N losses via NO_3~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.  相似文献   

13.
It has been proposed that yellow-cedar (Callitropsis nootkatensis) decline is initiated by the freezing injury of roots when soils freeze during times of limited snowpack. To explain the unique susceptibility of yellow-cedar in contrast to co-occurring species, yellow-cedar roots would need to be less cold tolerant and/or more concentrated in upper soil horizons that are prone to freezing. We measured the root cold tolerance and used concentrations of foliar cations as an assay of rooting depth for five species in one forest in Ketchikan, Alaska. Species evaluated were yellow-cedar, western redcedar (Thuja plicata), western hemlock (Tsuga heterophylla), mountain hemlock (Tsuga mertensiana), and Sitka spruce (Picea sitchensis). Roots were collected in November 2007 and January, March and May 2008; foliage was collected in January 2008. Soil samples from surface and subsurface horizons were analyzed for available calcium (Ca) and aluminum (Al) to compare with foliar cation concentrations. Across all dates the sequence in hardiness from the least to most cold tolerant species was (1) yellow-cedar, (2) western redcedar, (3) western and mountain hemlock, and (4) Sitka spruce. Yellow-cedar and redcedar roots were less cold tolerant than roots of other species on all sample dates, and yellow-cedar roots were less cold tolerant than redcedar roots in January. Yellow-cedar roots were fully dehardened in March, whereas the roots of other species continued to deharden into May. Yellow-cedar roots exhibited the highest electrolyte leakage throughout the year, a pattern that suggests the species was continuously poised for physiological activity given suitable environmental conditions. Yellow-cedar and redcedar had higher foliar Ca and lower Al concentrations, and greater Ca:Al ratios than the other species. Yellow-cedar had higher foliar Ca and Ca:Al than redcedar. Soil measurements confirmed that the upper horizon contained more extractable Ca, less Al and higher Ca:Al than the lower horizon. Considering the distribution of Ca and Al in soils, we propose that concentrations of Ca and Al in yellow-cedar and redcedar foliage reflect a greater proportional rooting of these species in upper soil horizons compared to other species tested. Greater Ca and Ca:Al in the foliage of yellow-cedar suggests shallower rooting compared to redcedar, but broad similarities in foliar cation profiles for these species also highlight some overlap in rooting niche. Our data indicate that both limited root cold tolerance and shallow rooting likely contribute to the unique sensitivity of yellow-cedar to freezing injury and decline relative to sympatric conifers.  相似文献   

14.

This study compared the total carbon (C), mineral nitrogen (N) contents and N mineralization potentials of the rhizospheric and bulk soils, collected at two depths in three forest sites in France. The site at Breuil is a comparative plantation of different species with or without fertilization, the Fougères site is a time sequence of four Fagus sylvatica L . stands including a limed plot, and the Aubure site is a comparison between adjacent young and old Picea abies. (L.) Karst stands with different nitrifying activity. Mineral N was extracted from fresh soil with K 2 SO 4 and after laboratory incubation at 15°;C for 2 days or 1 week. The moisture, C and N contents of the rhizospheric soil were higher than in the bulk soil in the A 1 horizon, but only slightly higher or similar in A 1 B horizons. Soil-extractable NH 4 and net mineralization were much larger in the rhizospheric soil than in the bulk soil. Soil-extractable NO 3 and net nitrification were not significantly different. Soil-extractable NH 4 and net N mineralization were linearly and positively related to the soil C (or N) contents, but the relationship was stronger and the amount of mineral N per gram of carbon was higher for rhizospheric soil. This suggests that the quality of rhizospheric carbon should be taken into account. Net N mineralization was negatively related to the soil C/N ratio. In summary, tree roots appear to have a strong influence on N transformation in soils.  相似文献   

15.
It was hypothesized that increasing air and/or soil temperature would increase rates of microbial processes including litter decomposition and net N mineralization, resulting in greater sequestration of carbon and nitrogen in humus, and consequently development in OH horizon (humus horizon). To quantify the effect of temperature on biochemical processes controlling the rate of OH layer development three adjacent forest floors under beech, Norway spruce and mixed species stands were investigated at Soiling forest, Germany by an incubation experiment of OH layer for three months. Comparing the fitted curves for temperature sensitivity of OH layers in relation to net N mineralization revealed positive correlation across all sites. For the whole data set of all stands, a Q10 (temperature sensitivity index) value of 2.35-2.44 dependent on the measured units was found to be adequate for describing the temperature dependency of net N mineralization at experimental site. Species-specific differences of substrate quality did not result in changes in biochemical properties of OH horizon of the forest floors. Temperature elevation increased net N mineralization without significant changes in microbial status in the range of I to 15℃. A low Cmic /Corg (microbial carbon/organic carbon) ratio at 20℃ indicated that the resource availability for decomposers has been restricted as reflected in significant decrease of microbial biomass.  相似文献   

16.
Carbon and nitrogen stocks and their medium-term and readily decomposable fractions in topsoils were compared in relation to soil microbial biomass and activity along sequences from coniferous to deciduous stands. The study was carried out in the Ore Mountains and the Saxonian lowland, representing two typical natural regions in Saxony, Germany. In accordance with current forest conversion practices, the investigation sites represent different stands: mature conifer stands of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) (type A); Norway Scots spruce and pine with advanced plantings of European beech (Fagus sylvatica L.) or European beech/Common oak (Quercus petreae Liebl.) (type B); and mature deciduous stands of European beech and European beech/Common oak (type C). The investigated forest sites can be grouped into three silvicultural situations according to the development from coniferous stands to advanced plantings and finally mature deciduous forests (chronosequence A–B–C). The organic layer (L, F and H horizons) and uppermost mineral soil (0–10 cm) were analysed for potential C mineralisation, microbial biomass, concentrations of total C and N (TOC and TN) and for medium-term and readily decomposable C and N fractions, obtained by hot- and cold-water extraction respectively. The results showed an increase in organic layer thickness and mass as well as TOC and TN stocks along the forest sequences in the lowland. Yet, underplanted sites with two storeys revealed higher organic layer mass as well as TOC and TN stocks as compared to coniferous and deciduous stands. Stocks of hot- and cold-water-extractable C and N in relation to microbial biomass and its activity revealed a high turnover activity in deeper organic horizons of deciduous forests compared to coniferous stands. The stand-specific differentiation is discussed in relation to microbial biomass, litter quantity and quality and forest structure, but also with respect to the site-specific climatic factors and water budget as well as liming and fly-ash impacts. Results indicate higher dynamics in deciduous stands in the lowland especially during the initial turnover phase. The elevated microbial activity in deeper organic horizons of deciduous litter-influenced sites in spring is discussed as a specific indicator for long-term C sequestration potential as besides C mineralisation organic compounds are humified and thus, can be stored in the organic layer or in deeper soil horizons. Due to liming activities, stand-specific effects on organic matter turnover dynamics have evened out today in the Ore mountain region, but will presumably occur again once base saturation decreases. Here, the stand-specific effect on microbial biomass can currently be seen again as Cmic in the L horizon increased from spruce to beech. Our study sites in the lowland revealed no significant fly-ash impact. Differences between sites were evaluated by calculating the discriminance function. TOC and TN as well as medium-term degradable C and N were defined in this study as indicators for turnover dynamics along forest conversion sites.  相似文献   

17.
Relatively little is known about soil organic carbon (SOC) dynamics in montane ecosystems of the semi-arid western U.S. or the stability of current SOC pools under future climate change scenarios. We measured the distribution and quality of SOC in a mosaic of rangeland-forest vegetation types that occurs under similar climatic conditions on non-calcareous soils at Utah State University's T.W. Daniel Experimental Forest in northern Utah: the forest types were aspen [Populus tremuloides] and conifer (mixture of fir [Abies lasiocarpa] and spruce [Picea engelmannii]); the rangeland types were sagebrush steppe [Artemisia tridentata], grass-forb meadow, and a meadow-conifer ecotone. Total SOC was calculated from OC concentrations, estimates of bulk density by texture and rock-free soil volume in five pedons. The SOC quality was expressed in terms of leaching potential and decomposability. Amount and aromaticity of water-soluble organic carbon (DOC) was determined by water extraction and specific ultra violet absorbance at 254 nm (SUVA) of leached DOC. Decomposability of SOC and DOC was derived from laboratory incubation of soil samples and water extracts, respectively.

Although there was little difference in total SOC between soils sampled under different vegetation types, vertical distribution, and quality of SOC appeared to be influenced by vegetation. Forest soils had a distinct O horizon and higher SOC concentration in near-surface mineral horizons that declined sharply with depth. Rangeland soils lacked O horizons and SOC concentration declined more gradually. Quality of SOC under rangelands was more uniform with depth and SOC was less soluble and less decomposable (i.e., more stable) than under forests. However, DOC in grass-forb meadow soils was less aromatic and more bioavailable, likely promoting C retention through cycling. The SOC in forest soils was notably more leachable and decomposable, especially near the soil surface, with stability increasing with soil depth. Across the entire dataset, there was a weak inverse relationship between the decomposability and the aromaticity of DOC. Our data indicate that despite similar SOC pools, vegetation type may affect SOC retention capacity under future climate projections by influencing potential SOC losses via leaching and decomposition.  相似文献   


18.
Soluble organic nitrogen in forest soils of northeast China   总被引:2,自引:0,他引:2  
Soluble organic nitrogen (SON) is recognized as a sensitive indicator of soil nitrogen status. The present work was conducted in the temperate forests of northeast China where soils are typically characterized by high organic matter and high organic nitrogen content, and soil sampling was made in early spring just after the freeze-thaw period. The water extracted SON pools in the organic layer of forest soils were measured within the range from 156.0 mg·kg-1 to 292.6 mg·kg-1, a similar magnitude of salt solution extracted SON pools reported in literatures. However, the water soluble SON pools in 0-15 cm mineral soils in present study were much higher (3-10 times) than any other reports, ranging from 58.6 mg·kg-1 to 125.2 mg·kg-1. Water soluble SON varied markedly among the soils under different forests and at different sites. The SON in water extracts were positively and significantly correlated to soil organic matter and total nitrogen contents, but negatively correlated to microbial biomass nitrogen (MBN). The reasons of the abnormally large SON pools and the negative correlations between SON and MBN in the 0-15cm mineral soils in this study were specially discussed.  相似文献   

19.
15N and 13C natural abundances of foliage, branches, trunks, litter, soil, fungal sporophores, mycorrhizas and mycelium were determined in two forest stands, a natural forest and a Norway spruce plantation, to obtain some insights into the role of the functional diversity of saprotrophic and ectomycorrhizal fungi in carbon and nitrogen cycles. Almost all saprotrophic fungi sporophores were enriched in 13C relative to their substrate. In contrast, they exhibited no or very little shift of δ15N. Judging from the amount of C discrimination, ectomycorrhizal fungi seem to acquire carbon from their host or from dead organic matter. Some ectomycorrhizal species seem able to acquire nitrogen from dead organic matter and could be able to transfer it to their host without nitrogen fractionation, while others supply their host with 15N-depleted nitrogen. Moreover ectomycorrhizal species displayed a significant N fractionation during sporophore differentiation, while saprotrophic fungi did not.  相似文献   

20.
Liu L  King JS  Giardina CP 《Tree physiology》2005,25(12):1511-1522
Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest productivity through changes in soil organic matter content, characterizing changes in leaf litter in response to environmental change is critical to understanding the effects of global change on forests. We assessed the independent and combined effects of elevated [CO2] and elevated [O3] on foliar litter production and chemistry in aspen (Populus tremuloides Michx.) and birch-(Betula papyrifera Marsh.) aspen communities at the Aspen free-air CO2 enrichment (FACE) experiment in Rhinelander, WI. Litter was analyzed for concentrations of C, nitrogen (N), soluble sugars, lipids, lignin, cellulose, hemicellulose and C-based defensive compounds (soluble phenolics and condensed tannins). Concentrations of these chemical compounds in naturally senesced litter were similar in aspen and birch-aspen communities among treatments, except for N, the C:N ratio and lipids. Elevated [CO2] significantly increased C:N (+8.7%), lowered mean litter N concentration (-10.7%) but had no effect on the concentrations of soluble sugars, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased litter biomass production (+33.3%), resulting in significant increases in fluxes of N, soluble sugars, soluble phenolics and condensed tannins to the soil. Elevated [O3] significantly increased litter concentrations of soluble sugars (+78.1%), soluble phenolics (+53.1%) and condensed tannins (+77.2%). There were no significant effects of elevated [CO2] or elevated [O3] on the concentrations of individual C structural carbohydrates (cellulose, hemicellulose and lignin). Elevated [CO2] significantly increased cellulose (+37.4%) input to soil, whereas elevated [O3] significantly reduced hemicellulose and lignin inputs to soil (-22.3 and -31.5%, respectively). The small changes in litter chemistry in response to elevated [CO2] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly alter the inputs of N, soluble sugars, condensed tannins, soluble phenolics, cellulose and lignin to forest soils in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号