首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The reintroduction of beaver (Castor canadensis) into arid and semi‐arid rivers is receiving increasing management and conservation attention in recent years, yet very little is known about native versus non‐native fish occupancy in beaver pond habitats. Streams of the American Southwest support a highly endemic, highly endangered native fish fauna and abundant non‐native fishes, and here we investigated the hypothesis that beaver ponds in this region may lead to fish assemblages dominated by non‐native species that favour slower‐water habitat. We sampled fish assemblages within beaver ponds and within unimpounded lotic stream reaches in the mainstem and in tributaries of the free‐flowing upper Verde River, Arizona, USA. Non‐native fishes consistently outnumbered native species, and this dominance was greater in pond than in lotic assemblages. Few native species were recorded within ponds. Multivariate analysis indicated that fish assemblages in beaver ponds were distinct from those in lotic reaches, in both mainstem and tributary locations. Individual species driving this distinction included abundant non‐native green sunfish (Lepomis cyanellus) and western mosquitofish (Gambusia affinis) in pond sites, and native desert sucker (Catostomus clarkii) in lotic sites. Overall, this study provides the first evidence that, relative to unimpounded lotic habitat, beaver ponds in arid and semi‐arid rivers support abundant non‐native fishes; these ponds could thus serve as important non‐native source areas and negatively impact co‐occurring native fish populations.  相似文献   

2.
3.
4.
5.
6.
Environmental flow assessment (EFA) involving microhabitat preference models is a common approach to set ecologically friendly flow regimes in territories with ongoing or planned projects to develop river basins, such as many rivers of Eastern Africa. However, habitat requirements of many African fish species are poorly studied, which may impair EFAs. This study investigated habitat preferences of fish assemblages, based on species presence–absence data from 300 microhabitats collected in two tributaries of the Kilombero River (Tanzania), aiming to disentangle differences in habitat preferences of African species at two levels: assemblage (i.e. between tributaries) and species (i.e. species‐specific habitat preferences). Overall, flow velocity, which implies coarser substrates and shallower microhabitats, emerged as the most important driver responsible of the changes in stream‐dwelling assemblages at the microhabitat scale. At the assemblage level, we identified two important groups of species according to habitat preferences: (a) cover‐orientated and limnophilic species, including Barbus spp., Mormyridae and Chiloglanis deckenii, and (b) rheophilic species, including Labeo cylindricus, Amphilius uranoscopus and Parakneria spekii. Rheophilic species preferred boulders, fast flow velocity and deeper microhabitats. At the species level, we identified species‐specific habitat preferences. For instance, Barbus spp. preferred low flow velocity shallow depth and fine‐to‐medium substratum, whereas L. cylindricus and P. spekii mainly selected shallow microhabitats with coarse substrata. Knowledge of habitat preferences of these assemblages and species should enhance the implementation of ongoing and future EFA studies of the region.  相似文献   

7.
8.
9.
  • 1. Classification is a useful tool for researchers and managers wishing to group functionally similar sites or to identify unique or threatened habitats. A process‐based river classification scheme that successfully integrates physical and biological aspects of lotic form and function would enhance conservation and restoration efforts by allowing more meaningful comparisons among sites, and improving functional understanding of lotic ecosystems.
  • 2. The River Styles framework provides a geomorphological river characterization scheme in which assemblages of geomorphic units vary for differing River Styles, presenting differing arrays of aquatic habitat diversity for each style.
  • 3. The ecological significance of the River Styles framework is tested by comparing the macroinvertebrate assemblages and habitat characteristics of pool and run geomorphic units for three different River Styles on the north coast of New South Wales, Australia.
  • 4. Multivariate ordinations and analysis of similarity (ANOSIM) revealed that macroinvertebrate community structure differed between Bedrock‐Controlled Discontinuous Floodplain rivers and Gorge rivers, and between Bedrock‐Controlled Discontinuous Floodplain and Meandering Gravel Bed rivers, especially in pools. Differences between Gorge and Meandering Gravel Bed rivers were less apparent, largely due to variations within the Meandering Gravel Bed rivers group.
  • 5. The variability in macroinvertebrate assemblage structure among geomorphic units was most strongly related to variability in substrate and hydraulic variables. Substrate composition differed significantly among all River Styles and geomorphic units, but other habitat variables showed few consistent differences among River Style groups.
  • 6. These results suggest that the ecological similarity of macroinvertebrate communities within River Styles may presently be limited because some important large‐scale drivers of local habitat conditions are not included in River Styles designations. Integrating River Styles classification with other large‐scale variables reflecting stream size, temperature and hydrological regime may produce a process‐based physical classification capable of identifying river reaches with similar ecological structure and function.
Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
11.
River–floodplain complexes represent some of the most variable and diverse habitats on earth, yet they are among our planet's most threatened ecosystems. Use of these habitats by large‐bodied fishes is especially poorly understood, particularly in temperate regions. To provide insight into the factors that affect floodplain assemblages and migration, we sampled large‐bodied fishes with a fyke trap for 7 years in the Yolo Bypass, the primary flood basin of the Sacramento River, California. We collected a total of 18,336 individual fish comprised of 27 species, only 41% of which were native. Year‐round resident species white catfish Ameiurus catus, channel catfish Ictalurus punctatus and common carp Cyprinus carpio (all alien species) were the most abundant and comprised 74% of the total catch. Splittail Pogonichthys macrolepidotus (3.8%), white sturgeon Acipenser transmontanus (2.3%) and Sacramento sucker Catostomus occidentalis (1.1%) were the primary native species. We found that seasonal variation in water temperature and flood stage were important factors affecting the fish assemblage structure and the presence of migratory species. American shad Alosa sapidissima, an alien species, showed highest abundance during the early summer upstream migration, when temperatures were warmer. For native species, the abundances of white sturgeon, splittail, Sacramento pikeminnow Ptychocheilus grandis and Sacramento sucker were all highest during flood pulses. While our results suggest that flow alone is not sufficient to control alien species, the strong linkage between native fish migration and flow pulses highlights the importance of river–floodplain connectivity for the conservation of native fishes.  相似文献   

12.
  1. Large-scale movement of fishes is a challenge for conservation and management in rivers, especially when individuals can cross jurisdictional boundaries.
  2. Assessing large-scale movement is particularly difficult during early life stages, especially when endangered species are involved. After hatching, free embryos of the federally endangered pallid sturgeon (Scaphirhynchus albus) drift long distances during development. Following the transition to exogenous feeding, individuals may continue to move downstream, resulting in a potential two-step migration.
  3. Tagged age-0 pallid sturgeon were stocked into the lower Missouri River, which provided an opportunity to assess pallid sturgeon dispersal as well as the hypothesized two-step migration. From July 2018 to April 2021, 79 individuals were captured, with most dispersing 200–800 km downstream from the stocking location.
  4. The observed dispersal of pallid sturgeon supports the two-step downstream migration hypothesis. This migration may lead to dispersal into the Mississippi River, which highlights the need for expanded monitoring into the Mississippi River for an effective evaluation of pallid sturgeon recovery actions. This study also reinforces the importance of inter-jurisdictional management and collaboration to better account for the large-scale movement of river fishes.
  相似文献   

13.
Fish assemblages in six reaches of the Hawkesbury–Nepean River were studied to identify the effects of two types of riparian vegetation; well‐vegetated banks supporting complex flora dominated by trees and shrubs, and grassed banks, that have been colonised only by grasses after historical deforestation. The fish assemblages showed both spatial and temporal differences and habitats adjacent to grassed banks supported more individuals and more fish species than well‐vegetated banks. Three small species of fish, firetail gudgeon, Hypseleotris galii (Ogilby), flathead gudgeon, Philypnodon grandiceps (Krefft), and empire gudgeon, Hypseleotris compressa (Krefft), occurred in greater abundances adjacent to grassed banks, but freshwater mullet, Myxus petardi (Castelnau), were less abundant near grassed banks than beside well‐vegetated banks. Differences were also shown in the size frequencies of the four larger fish species between riparian vegetation types. The observed differences in the distributions of fish species appeared to be related to the greater abundance aquatic macrophytes near grassed banks, probably an effect of shading of macrophytes near well‐vegetated banks.  相似文献   

14.
15.
  • 1. Chilean rivers have a large potential for hydropower development, and they also contain a unique native fish fauna with a high level of endemism. Several diversion hydropower plants have recently been constructed in Chile; however, the response of fish communities to these new hydropower plant designs is not well known.
  • 2. Responses of native and non‐native fish to the construction and operation of a new hydropower plant that diverts water from two rivers were quantified. The Laja River is highly regulated and manipulated with three older (40 yr) dam‐based hydropower plants and irrigation diversions located upstream from the new facility. In contrast, the Rucúe River has no other hydropower facilities and is comparatively undisturbed.
  • 3. Prior to construction, the Laja River had a fish community with lower species richness compared with the Rucúe River. The fish community structure in the Laja River was dramatically altered after the new hydropower facility began operation. On the other hand, in the Rucúe River, even though abundance of fish declined, there was less of a change in the total fish community structure. The fish community in the Rucúe River exhibited greater resistance to change compared with the Laja River.
  • 4. The species most affected were the introduced salmonids and an endangered native species Percilia irwini.
  • 5. Although diversion hydropower designs may have less impact than traditional dam‐based hydropower facilities, results of this study indicate that diversion hydropower structures can cause large changes in the fish community.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract –  Spatial and temporal variation of species–environment relationships were evaluated for shallow-margin and deep-water fish assemblages in the Brazos River, a large floodplain river in Texas, USA. Total variation among the deep-water assemblages (11 species, 86% turnover across gill net samples) was greater than for shallow-margins (38 species, 64% turnover across seine samples). For both shallow-margin and deep-water assemblages, variation was greater among sites than between winter and summer seasons. Shallow-margin assemblage structure was related to depth, velocity and substrate, whereas for deep-water assemblages river discharge, temperature and velocity were important. Season itself accounted for little of the variation among either shallow (6.7%) or deep-water (2.3%) assemblages. Overall temporal patterns of shallow-margin samples appeared to show responses to juvenile recruitment, spates and migration of coastal fishes, whereas for deep-water samples, patterns related to use of reproductive habitats, juvenile recruitment and seasonal activity levels. Brazos River assemblages were less variable overall in comparison with studies along similar length of reach in headwater streams and wadeable rivers. The residual variation in species distribution (54% for shallow-margin and 67% for deepwater) that was not explained by instream variables and season suggests a greater influence of biotic interactions in rivers, particularly those across the spatially dynamic interface of main channel habitats and shallow river margins.  相似文献   

17.
Abstract Non‐wadeable river systems are some of the most diverse aquatic ecosystems, but little work has been conducted to quantify the relationships between fish assemblages and habitat characteristics in them. In 2007 and 2008, 21 reaches were sampled on 16 non‐wadeable rivers across Iowa, USA. Fish were sampled in each reach with three different gears, and habitat characteristics (channel morphology, current velocity, instream cover) were measured using standard procedures. Fish assemblages were structured based on drainage basin and reaches and could be categorised as belonging to one of three groups. Reaches in the Missouri River basin group were narrow and had a high proportion of fine substrate. Reaches in the Mississippi River A group were also narrow but had a high proportion of large rocky substrate. Reaches in the Mississippi River B group tended to be wider, deeper and have higher proportions of fine substrate than the other groups. Fish assemblages were closely related to habitat characteristics and reflected differences among the three groups. Results of this study suggest that stream geomorphology may have a substantial influence on fish assemblage structure in large rivers.  相似文献   

18.
To assess the likelihood of enhancing native fish populations by means of floodplain restoration projects, habitat characteristics and fish assemblages of seven perennial floodplain ponds in Yolo Bypass, the primary floodplain of the Sacramento River, California (USA), were examined during summer 2001. Although all ponds were eutrophic, based upon high chlorophyll a or dissolved nutrient concentrations, relatively large shallow ponds generally exhibited higher specific conductivity and dissolved phosphorus concentrations than small deep ponds, which exhibited greater water transparency and total dissolved nitrogen concentrations. Using multiple gear types, 13 688 fishes comprising 23 species were collected. All ponds were dominated by alien fishes; only three native species contributing <1% of the total number of individuals and <3% of overall biomass were captured. Fish assemblage structure varied among ponds, notably between engineered vs. natural ponds, and was related to specific conductance, total dissolved solids and water transparency.  相似文献   

19.
The dispersal ecology of most stream fishes is poorly characterised, complicating conservation efforts for these species. We used microsatellite DNA marker data to characterise dispersal patterns and effective population size (Ne) for a population of Roanoke logperch Percina rex, an endangered darter (Percidae). Juveniles and candidate parents were sampled for 2 years at sites throughout the Roanoke River watershed. Dispersal was inferred via genetic assignment tests (ATs), pedigree reconstruction (PR) and estimation of lifetime dispersal distance under a genetic isolation‐by‐distance model. Estimates of Ne varied from 105 to 1218 individuals, depending on the estimation method. Based on PR, polygamy was frequent in parents of both sexes, with individuals spawning with an average of 2.4 mates. The sample contained 61 half‐sibling pairs, but only one parent–offspring pair and no full‐sib pairs, which limited our ability to discriminate natal dispersal of juveniles from breeding dispersal of their parents between spawning events. Nonetheless, all methods indicated extensive dispersal. The AT indicated unrestricted dispersal among sites ≤15 km apart, while siblings inferred by the PR were captured an average of 14 km and up to 55 km apart. Model‐based estimates of median lifetime dispersal distance (6–24 km, depending on assumptions) bracketed AT and PR estimates, indicating that widely dispersed individuals do, on average, contribute to gene flow. Extensive dispersal of P. rex suggests that darters and other small benthic stream fishes may be unexpectedly mobile. Monitoring and management activities for such populations should encompass entire watersheds to fully capture population dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号