首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超疏水表面因其广阔的应用前景而成为国内外研究热点。本文综述了植物叶表面的超疏水性,分析了引起超疏水性的主要原因(微观结构、化学组成等),对超疏水自清洁材料的研究趋势进行了展望,旨在为仿生多功能表面的设计和制备提供参考。  相似文献   

2.
通过St?ber法与溶液自组装的方法在二氧化硅球表面接枝了十八烷基三氯硅烷,采用滴涂的方法在木材表面制备聚二甲基硅氧烷和二氧化硅涂层。用SEM、FT-IR、XPS对其微观形貌、化学组分、表面结构进行表征;通过砂纸磨损实验、静态水接触角和滚转角对其稳定性能进行了测试和评价。结果表明:在木材表面沉积了纳米SiO2-PDMS涂层,改变了木材的润湿性与稳定性;SiO2-PDMS超疏水木材不但没有改变木材的色彩纹理,还使木材表面具有低黏附超疏水特性,接触角约为158°,滚动角为6°。SiO2-PDMS超疏水木材仍然保持了超疏水性,说明SiO2-PDMS超疏水木材具有良好的机械稳定性,因此所制得的木材表面不仅具有超疏水性,而且在砂纸磨损试验后具有优良的耐磨性。  相似文献   

3.
随着生物医学工程的迅速发展,对特殊界面材料的需求愈加迫切。具有疏水性、防粘性、自洁性和抑菌性的独特功能表面,展现出广泛的应用前景。本文对超疏水表面材料的制备及其抑菌性检测方法进行了综述,旨在为新型生物医学材料的设计与开发提供参考。  相似文献   

4.
初春至秋末的漠大线管道和站场设备的表面温度低于环境温度,在湿度过大的情况下,会弓『起严重的冷凝水腐蚀,为此研发了一种涂覆方便,且便于大面积使用的超输水防腐涂层。利用疏水改性的无机纳米粒子和含氟丙烯酸树脂,通过一步共混获得表面粗糙的疏水涂层。涂层的SEM照片表明,涂层表面具有微纳米二级粗糙结构。涂层疏水性能测试表明,接触角达到了155.6°,具备了超疏水能力。通过对涂层的附着力、耐化学试剂、耐盐雾性、耐冲击性等进行测试和现场冷凝水试验,结果表明:该涂层具有优异的冷凝水防护效果,基本能够满足现场应用要求。(表1,图4,参16)  相似文献   

5.
采用纳米压印技术与硅烷化接枝改性处理相结合的方法,将遗态材料茭草叶表面的微纳米槽棱构筑于木材表面,得到遗态仿生各项异性超疏水木材.通过SEM、EDS、XRD、FTIR以及WCA对试样的微观形貌、化学元素组成、表面化学状态以及润湿性进行表征.结果表明:遗态仿生各向异性超疏水木材表面具有与茭草叶类似的微观形貌;其水接触角为158°,表现出超疏水性能;此外,其表面的水滴在翻转至垂槽方向时,水滴粘附在试样表面没有滴落,而平槽方向上水滴迅速滚落,表现各项异性.同时,经不同温度蒸煮处理后对其稳定超疏水性进行了测试,结果表明其水接触角均大于150°,仍具有超疏水特性,制备的超疏水木材表面具有耐久性与耐候性.  相似文献   

6.
通过控制氧化法在铜基底表面制得了氧化铜纳米花瓣膜,然后分别用十二烷基硬脂酸、硬脂酸、十二烷基硫醇和线性低密度聚乙烯对其表面进行修饰.结果表明:试验得到了超疏水复合膜,表面接触角均超过150°,滚动角小于5°.其中,十二烷基硫醇修饰时,可在短时间内(1h)得到疏水性较高的纳米复合膜,表面的接触角达到165°.通过晶型分析讨论纳米氧化铜的形成机理,并用X-射线粉末衍射(XRD)、接触角测量、表面反射红外光谱(IR)及扫描电子显微镜(SEM)对复合膜进行了表征分析,结果表明,试验成功制备了具有不同形貌的超疏水性纳米结构复合膜.  相似文献   

7.
纳米结构SiO2与植物真菌病害发生的关系   总被引:7,自引:2,他引:7  
从植物体内的纳米结构SiO2和化学合成的纳米结构SiO2在叶表的沉积之后赋予植物叶片独特的物理学特性入手,详细讨论了纳米结构SiO2抑止真菌孢子和寄主表面的高度专一性的超分子识别过程的第一步反应,从而提出纳米结构SiO2可能改变植物叶表面原有的扑结构和疏水等物理学特性,即形成特殊的双亲性表面,影响真菌胞外物质的释放和芽管、附着胞及侵染钉的形成,阻断真菌孢子早期的侵染过程,从而确定靶向的真菌病害的控制措施。  相似文献   

8.
基于模板印刷法的仿生超疏水木材的研制   总被引:1,自引:0,他引:1  
通过模板印刷法改性处理木材表面,得到与玫瑰花瓣表面结构相同的纳米形貌超疏水木材。使用接触角检测仪测量样品表面润湿性,使用能谱分析仪(EDS)测定模板的化学成分,使用XRD测定试样晶体结构,使用DTG-60AH测定试样热稳定性。结果表明:制备的仿生超疏水木材没有改变木材的基本系能,但使木材表面具有高黏附超疏水特性;仿生超疏水木材表面的静态水接触角约为(157. 5°±0. 5°),可以阻止木材吸收水分;仿生超疏水木材具备的良好的热稳定性,热解过程质量损失约73. 2%,低于未经改性木材。  相似文献   

9.
研究用两亲性嵌段共聚物和纳米二氧化硅制备超疏水表面.采用可逆加成-断裂链转移聚合法(RAFT)合成了两亲性嵌段共聚物聚甲基丙烯酸叔丁酯-b-聚(4-乙烯基吡啶),用红外光谱,核磁共振,凝胶渗透色谱对聚合物进行了表征,将嵌段共聚物接枝到纳米二氧化硅上,形成一个有机无机杂化材料,通过调节pH值来控制杂化材料在水中的聚集行为,构筑了微纳双重结构的粗糙表面.该表面为超疏水表面,对水接触角达151°,滚动角<5°.扫描电镜分析表面形貌表明:具有微纳双重结构的类似荷叶表面是形成超疏水的根本原因.  相似文献   

10.
通过溶胶凝胶法,赋予竹材超疏水特性,以拓宽竹材的应用范围。以正硅酸乙酯(TEOS)为前驱体,氨水为催化剂,制备硅溶胶浸渍液,选用十六烷基三甲氧基硅烷(HDTMS)的乙醇水解液对浸渍处理后的竹材表面进行修饰,制备超疏水竹材表面。结果表明,处理后竹材表面形成直径大小为50~100 nm的颗粒状薄膜;竹材横截面接触角达到154°,具备了超疏水表面特性;改性后疏水效果随HDTMS质量分数增加而提高,当HDTMS质量分数为5%时,疏水效果达到最佳,之后随HDTMS质量分数增加有减小趋势。  相似文献   

11.
竹材表面仿生构筑类月季花超疏水结构的研究   总被引:1,自引:0,他引:1  
为克服竹材因吸湿而产生开裂、变形等缺陷,利用软印刷技术,以新鲜月季花Rosa chinensis为模板,聚二甲基硅氧烷为印章,在竹材表面仿生构筑类月季花瓣表面的超疏水微纳结构,经转印复型使竹材具有类月季花瓣高黏滞力的超疏水特性。利用扫描电子显微镜观测并对接触角进行测试。结果表明:制备的类月季花瓣竹材样品具有与月季花瓣类似的乳突状微米结构和凹槽状纳米结构的粗糙表面,它与水滴的接触角高达到153.5°,接近月季花瓣表面的接触角157.5°,显示出超疏水特性。同时,水滴可以牢固附着在竹块表面,并将其翻转90.0°和180.0°,水滴均不会滚落,表现了良好的黏附性。此外,试样提高了对涂料附着的能力。  相似文献   

12.
天然气管道低温输送时容易发生冰堵,影响正常的输气生产。以站场设备的冰堵防治为目的,通过冰冻实验,使用接触角测试仪、扫描电镜进行测试并结合理论分析,探索了通过表面改性方法调节站场运行设备表面的化学性质,进而防治冰堵的可行性。研究表明:适当的表面处理和硅烷改性,可以在钢表面形成一层疏水或超疏水纳米膜,增加水在其表面的接触角,使水难以在钢表面停留,同时冰冻实验也证明表面改性可以延长结冰时间;经疏水和超疏水改性后,由于接触角增大,引起水结晶成冰的形核功大幅增加,并且接触角越大,形核功越大,越难结晶成冰。实验和理论研究结果证明,钢表面疏水改性,可以解决站场设备的冰堵问题,具有应用潜力。  相似文献   

13.
为获取各向异性超疏水表面研制的仿生原型,采用接触角测量仪测试表征了猪笼草(Nepenthes alata)叶笼滑移区的各向异性超疏水润湿特性,采用扫描电镜和三维形貌干涉仪观测滑移区形貌结构并提取三维特征信息,分析滑移区形貌结构对各向异性超疏水润湿特性的影响机理。结果表明:水滴在滑移区的接触角为(155.07±1.14)°,朝向叶笼底部和顶部的滚动角分别为(2.82±0.45)°和(5.40±0.31)°;滑移区覆盖着两端朝向叶笼内部弯曲且具有不对称凸面表层轮廓的微米级月骨体,以及形貌轮廓不规则且交错排列成致密孔洞结构的纳米级蜡质晶体,其中能够蓄留空气的蜡质晶体是产生超疏水润湿特性的重要因素;月骨体在不同方向的斜坡结构、悬崖结构致使水滴在滑移区滚动难易程度呈现差异,从而导致滚动角的显著不同与各向异性超疏水润湿现象的产生。  相似文献   

14.
天然气管道低温输送时容易发生冰堵,影响正常的输气生产.以站场设备的冰堵防治为目的,通过冰冻实验,使用接触角测试仪、扫描电镜进行测试并结合理论分析,探索了通过表面改性方法调节站场运行设备表面的化学性质,进而防治冰堵的可行性.研究表明:适当的表面处理和硅烷改性,可以在钢表面形成一层疏水或超疏水纳米膜,增加水在其表面的接触角,使水难以在钢表面停留,同时冰冻实验也证明表面改性可以延长结冰时间;经疏水和超疏水改性后,由于接触角增大,引起水结晶成冰的形核功大幅增加,并且接触角越大,形核功越大,越难结晶成冰.实验和理论研究结果证明,钢表面疏水改性,可以解决站场设备的冰堵问题,具有应用潜力.  相似文献   

15.
以水热法和银镜法在木材表面制备出Ag-TiO2复合微纳米结构薄膜,并通过有机物氟硅烷修饰使木材表面具有超疏水性。采用场发射扫描电子显微镜(FE-SEM)、X射线衍射能谱(XRD)、傅立叶变换红外光谱仪(FTIR)和接触角测试等方法对木材表面进行了分析和表征。研究结果显示,经氟硅烷修饰后的Ag-TiO2负载的木材表面具有良好的紫外光驱动润湿性转换的特性,即光照前为超疏水性(152.8°)和亲油性(25°),光照一段时间后转变为超疏油性(150.2°)和亲水性(26.2°)。这是由于氟硅烷受到紫外光照射后会光致分解破坏一部分的烷基链,并在紫外光的激发下产生亲水基团所致。同时,与单纯TiO2负载的木材相比,Ag-TiO2复合薄膜中银纳米颗粒赋予了木材良好的抑菌性能,可提高木材的生物耐久性。以上研究为木材润湿性转换的智能化设计和多功能化设计开辟了新的途径。  相似文献   

16.
纳米结构SiO_2与植物真菌病害发生的关系   总被引:1,自引:0,他引:1  
从植物体内的纳米结构SiO2 和化学合成的纳米结构SiO2 在叶表的沉积以及沉积之后赋予植物叶片独特的物理学特性入手 ,详细讨论了纳米结构SiO2 抑止真菌孢子和寄主表面的高度专一性的超分子识别过程的第一步反应 ,从而提出纳米结构SiO2 可能改变植物叶表面原有的拓扑结构和疏水等物理学特性 ,即形成特殊的双亲性表面 ,影响真菌胞外物质的释放和芽管、附着胞及侵染钉的形成 ,阻断真菌孢子早期的侵染过程 ,从而确定靶向的真菌病害的控制措施  相似文献   

17.
为研究转谷氨酰胺酶交联大豆分离蛋白(SPI)的结构变化与凝胶特性之间的关系,利用SPSS软件Person分析法研究了交联后SPI结构变化与凝胶强度的相关性,发现转谷氨酰胺酶交联SPI后,其结构特征发生变化,表面疏水基团暴露,表面疏水性提高35.9%,表面巯基含量降低24.8%,二硫键含量增加10.3%,自由氨基的含量降低73.8%.相关性研究结果表明:表面疏水性含量与凝胶强度呈正相关,巯基含量与凝胶强度呈负相关,二硫键与凝胶强度呈显著正相关,自由氨基含量与凝胶强度呈显著负相关,4种结构特性对凝胶强度均有影响,表面疏水性和二硫键有利于提高凝胶强度.  相似文献   

18.
竹材表面超疏水改性的初步研究田根   总被引:1,自引:0,他引:1  
基于超疏水表面的制备原理,以低表面能的三氯甲基硅烷为原料,利用常温、常压化学气相沉积法在竹材表面自组装形成直径30~80 nm的纳米棒阵列或纳米线网状结构,使竹材横切面对液态水接触角最大达到157°,滚动角接近0,具备了超疏水表面特性。本研究证实了赋予竹、木等亲水性木质纤维素材料以超强疏水性能的技术是可行性的。   相似文献   

19.
选用国产豌豆(Pisum sativum L.)和进口麻豌豆(Pisum sativum var. saccharatum)为材料,利用扫描电镜观察叶片及PDMS仿生膜微观结构,使用接触角测量仪测定叶片及PDMS仿生膜表面接触角,使用红外光谱测量仪分析叶片化学组成。以叶片为模板,以聚二甲基硅氧烷(PDMS)为基材,用软刻蚀法制备高分子仿生膜。结果表明,豌豆叶片表面具有明显的粗糙微观结构。豌豆叶片表面及仿生膜接触角均大于151. 8°,均具有较高的疏水性。叶片化学成分主要包括烃基、酯类等疏水性基团。PDMS仿生膜复制叶片表面的微观结构,具有较强的疏水性和抗菌性。  相似文献   

20.
基于超疏水表面的制备原理,以低表面能的三氯甲基硅烷为原料,利用常温、常压化学气相沉积法在竹材表面自组装形成直径30~80nm的纳米棒阵列或纳米线网状结构,使竹材横切面对液态水接触角最大达到157°,滚动角接近0,具备了超疏水表面特性。本研究证实了赋予竹、木等亲水性木质纤维素材料以超强疏水性能的技术是可行性的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号