首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to first evaluate whether the chitosan hydrochloride-genipin crosslinking reaction is influenced by factors such as time, and polymer/genipin concentration, and second, to develop crosslinked drug loaded microspheres to improve the control over drug release. Once the crosslinking process was characterized as a function of the factors mentioned above, drug loaded hydrochloride chitosan microspheres with different degrees of crosslinking were obtained. Microspheres were characterized in terms of size, morphology, drug content, surface charge and capacity to control in vitro drug release. Clarithromycin, tramadol hydrochloride, and low molecular weight heparin (LMWH) were used as model drugs. The obtained particles were spherical, positively charged, with a diameter of 1–10 μm. X-Ray diffraction showed that there was an interaction of genipin and each drug with chitosan in the microspheres. In relation to the release profiles, a higher degree of crosslinking led to more control of drug release in the case of clarithromycin and tramadol. For these drugs, optimal release profiles were obtained for microspheres crosslinked with 1 mM genipin at 50 ºC for 5 h and with 5 mM genipin at 50 ºC for 5 h, respectively. In LMWH microspheres, the best release profile corresponded to 0.5 mM genipin, 50 ºC, 5 h. In conclusion, genipin showed to be eligible as a chemical-crosslinking agent delaying the outflow of drugs from the microspheres. However, more studies in vitro and in vivo must be carried out to determine adequate crosslinking conditions for different drugs.  相似文献   

2.
In this work, a coating of chitosan onto alginate hydrogels was realized using the water-soluble hydrochloride form of chitosan (CH-Cl), with the dual purpose of imparting antibacterial activity and delaying the release of hydrophilic molecules from the alginate matrix. Alginate hydrogels with different calcium contents were prepared by the internal setting method and coated by immersion in a CH-Cl solution. Structural analysis by cryo-scanning electron microscopy was carried out to highlight morphological alterations due to the coating layer. Tests in vitro with human mesenchymal stromal cells (MSC) were assessed to check the absence of toxicity of CH-Cl. Swelling, stability in physiological solution and release characteristics using rhodamine B as the hydrophilic model drug were compared to those of relative uncoated hydrogels. Finally, antibacterial activity against Escherichia coli was tested. Results show that alginate hydrogels coated with chitosan hydrochloride described here can be proposed as a novel medicated dressing by associating intrinsic antimicrobial activity with improved sustained release characteristics.  相似文献   

3.
Background: The present study aimed to fabricate surface-modified chitosan nanoparticles with two mucoadhesive polymers (sodium alginate and polyethylene glycol) to optimize their protein encapsulation efficiency, improve their mucoadhesion properties, and increase their stability in biological fluids. Method: Ionotropic gelation was employed to formulate chitosan nanoparticles and surface modification was performed at five different concentrations (0.05, 0.1, 0.2, 0.3, 0.4% w/v) of sodium alginate (ALG) and polyethylene glycol (PEG), with ovalbumin (OVA) used as a model protein antigen. The functional characteristics were examined by dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)/scanning transmission electron microscopy (STEM). Stability was examined in the presence of simulated gastric and intestinal fluids, while mucoadhesive properties were evaluated by in vitro mucin binding and ex vivo adhesion on pig oral mucosa tissue. The impact of the formulation and dissolution process on the OVA structure was investigated by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD). Results: The nanoparticles showed a uniform spherical morphology with a maximum protein encapsulation efficiency of 81%, size after OVA loading of between 200 and 400 nm and zeta potential from 10 to 29 mV. An in vitro drug release study suggested successful nanoparticle surface modification by ALG and PEG, showing gastric fluid stability (4 h) and a 96 h sustained OVA release in intestinal fluid, with the nanoparticles maintaining their conformational stability (SDS-PAGE and CD analyses) after release in the intestinal fluid. An in vitro mucin binding study indicated a significant increase in mucin binding from 41 to 63% in ALG-modified nanoparticles and a 27–49% increase in PEG-modified nanoparticles. The ex vivo mucoadhesion showed that the powdered particles adhered to the pig oral mucosa. Conclusion: The ALG and PEG surface modification of chitosan nanoparticles improved the particle stability in both simulated gastric and intestinal fluids and improved the mucoadhesive properties, therefore constituting a potential nanocarrier platform for mucosal protein vaccine delivery.  相似文献   

4.
Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Polysaccharides, such as chitosan and carrageenan, which have good binding capacity with mucosal tissues, are now included in vaginal delivery systems. Marine polymer-based vaginal mucoadhesive solid formulations have been developed for the controlled release of acyclovir, which may prevent the sexual transmission of the herpes simplex virus. Drug release studies were carried out in two media: simulated vaginal fluid and simulated vaginal fluid/simulated seminal fluid mixture. The bioadhesive capacity and permanence time of the bioadhesion, the prepared compacts, and compacted granules were determined ex vivo using bovine vaginal mucosa as substrate. Swelling processes were quantified to confirm the release data. Biocompatibility was evaluated through in vitro cellular toxicity assays, and the results showed that acyclovir and the rest of the materials had no cytotoxicity at the maximum concentration tested. The mixture of hydroxyl-propyl-methyl-cellulose with chitosan- or kappa-carrageenan-originated mucoadhesive systems that presented a complete and sustained release of acyclovir for a period of 8–9 days in both media. Swelling data revealed the formation of optimal mixed chitosan/hydroxyl-propyl-methyl-cellulose gels which could be appropriated for the prevention of sexual transmission of HSV.  相似文献   

5.
Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.  相似文献   

6.
Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polymer, and dextran sulfate, the negatively charged polymer. The as-prepared hybrid ferrofluid, in which iron chloride salts (Fe3+ and Fe2+) were directly coprecipitated inside the hybrid polymeric matrices, was physic-chemically characterized. Its features include the z-average diameter of 114.3 nm, polydispersity index of 0.174, zeta potential of −41.5 mV and iron concentration of 8.44 mg Fe/mL. Moreover, based on the polymer chain persistence lengths, the anionic surface of the nanoparticles as well as the high R2/R1 ratio of 13.5, we depict the morphology of SPIONs as a cluster because chitosan chains are chemisorbed onto the anionic magnetite surfaces by tangling of the dextran sulfate. Finally, the cellular uptake and biocompatibility assays indicate that the hybrid polymer encapsulating the SPIONs exhibited great potential as a magnetic resonance imaging T2 contrast agent for cell tracking.  相似文献   

7.
In this study, we developed novel chitosan/fucoidan nanoparticles (CS/F NPs) using a simple polyelectrolyte self-assembly method and evaluated their potential to be antioxidant carriers. As the CS/F weight ratio was 5/1, the CS/F NPs were spherical and exhibited diameters of approximately 230–250 nm, as demonstrated by TEM. These CS/F NPs maintained compactness and stability for 25 day in phosphate-buffered saline (pH 6.0–7.4). The CS/F NPs exhibited highly potent antioxidant effects by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing the concentration of intracellular reactive oxygen species (ROS) and superoxide anion (O2) in stimulated macrophages. The DPPH scavenging effect of CS/F NPs primarily derives from fucoidan. Furthermore, these CS/F NPs activated no host immune cells into inflammation-mediated cytotoxic conditions induced by IL-6 production and NO generation. The MTT cell viability assay revealed an absence of toxicity in A549 cells after exposure to the formulations containing 0.375 mg NPs/mL to 3 mg NPs/mL. Gentamicin (GM), an antibiotic, was used as a model drug for an in vitro releasing test. The CS/F NPs controlled the release of GM for up to 72 h, with 99% of release. The antioxidant CS/F NPs prepared in this study could thus be effective in delivering antibiotics to the lungs, particularly for airway inflammatory diseases.  相似文献   

8.
In this study, chitosan nanoparticles (HF-CD NPs) were synthesized by an ionic gelation method using negatively charged carboxymethyl-β-cyclodextrin and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan bearing folic acid. The surface morphology of HF-CD NPs was spherical or oval, and they possessed relatively small particle size (192 ± 8 nm) and positive zeta potential (+20 ± 2 mV). Meanwhile, doxorubicin (Dox) was selected as model drug to investigate the prepared nanoparticles’ potential to serve as a drug delivery carrier. The drug loading efficiency of drug-loaded nanoparticles (HF-Dox-CD NPs) was 31.25%. In vitro release profiles showed that Dox release of nanoparticles represented a pH-sensitive sustained and controlled release characteristic. At the same time, the antioxidant activity of nanoparticles was measured, and chitosan nanoparticles possessed good antioxidant activity and could inhibit the lipid peroxidation inside the cell and avoid material infection. Notably, CCK-8 assay testified that the nanoparticles were safe drug carriers and significantly enhanced the antitumor activity of Dox. The nanoparticles possessed good antioxidant activity, pH-sensitive sustained controlled release, enhanced antitumor activity, and could be expected to serve as a drug carrier in future with broad application prospects.  相似文献   

9.
Background:Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. ALG and PLGA microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of risedronate from PLGA microparticles embedded with ALG was studied as a drug delivery system for sustained release of the drug, which can be used in local administrations. Methods:Risedronate-containing PLGA microparticles were fabricated using double emulsion solvent evaporation technique. Ionic cross-linking method was used to fabricate risedronate-loaded ALG. Risedronate-containing PLGA microparticles were then coated with ALG. The calibration curve of risedronate was traced to measure EE and study the release pattern. SEM imaging was carried out, and cell toxicity was examined using MTT assay. Statistical analysis of data was carried out using SPSS ver. 20 software, via one-way ANOVA and Tukey’s tests. Results:SEM imaging showed open porosities on ALGs. The mean EE of PLGA microparticles for risedronate was 57.14 ± 3.70%. Risedronate released completely after 72 h from ALG, and the cumulative release was significantly higher (p = 0.000) compared to PLGA microspheres coated with ALG, which demonstrated sustained released of risedronate until day 28. Risedronate-loaded ALG showed a significant decrease in gingival fibroblasts cell viability (p < 0.05). Conclusion: Alginate-coated PLGA microspheres could release risedronate in a sustained and controlled way and also did not show cell toxicity. Therefore, they seem to be an appropriate system for risedronate delivery in local applications. Key Words: Alginates, Hydrogels, Polylactic acid-polyglycolic acid copolymer, Risedronic acid  相似文献   

10.
This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug.  相似文献   

11.
Electrospun composite fibers of poly-lactic acid (PLA), chitosan (Ch) and paclitaxel (PTX) were fabricated for surface covering of a polymeric prototype PLA stent by means of single nozzle electrospinning approach to prepare a low cytotoxicity drug-eluting stent. Different concentrations of the drug (40 %, 60 %, 80 %, 100 % and 120 %) and chitosan (3 %, 5 %, 7 % and 9 %) were incorporated to reach the optimum composite fibers. The electrospun composite fibers were subjected to detailed analyses including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile test, MTT assay, cell culture and in vitro drug release. Results have confirmed a proper physical encapsulation of PTX in the polymeric matrix in which no chemical bonding was detected between the polymers and the drug. Among the fabricated composite fibers, specimens including 40 % and 60 % drug also exhibited an excellent cytotoxicity and controlled drug release. SEM images have proved the effect of paclitaxel in resisting cell adhesion and propagation on the fibers. Findings from this study suggest a novel polymer/drug coating that could be potentially applicable in surface covering of polymeric stents e.g. PLA stents.  相似文献   

12.
This work developed biodegradable foam trays from cassava starch blended with the natural polymers of fiber and chitosan. The kraft fiber at 0, 10, 20, 30 and 40% (w/w of starch) was mixed with cassava starch solution. Chitosan solution at 0, 2, 4 and 6% (w/v) was added into starch/fiber batter with 1:1. Hot mold baking was used to develop the cassava starch-based foam by using an oven machine with controlled temperature at 250 °C for 5 min. Results showed that foam produced from cassava starch with 30% kraft fiber and 4% chitosan had properties similar to polystyrene foam. Color as L*, a* and b* value of starch foam tray was slightly increased. Density, tensile strength and elongation of the starch-based foam were 0.14 g/cm3, 944.40 kPa and 2.43%, respectively, but water absorption index (WAI) and water solubility index (WSI) were greater than the polystyrene foam.  相似文献   

13.
Chitosan film has potential applications in agriculture, food, and pharmacy. However, films made only from chitosan lack water resistance and have poor mechanical properties. Forming miscible, biodegradable composite film from chitosan with other hydrophilic biopolymers is an alternative. The objective of this study was to prepare chitosan/starch composite films by combining chitosan (deacetylated degree, 90%) solution and two thermally gelatinized cornstarches (waxy starch and regular starch with 25% amylose). The film’s tensile strength (TS), elongation-at-break (E), and water vapor transmission rate (WVTR) were investigated. The possible interactions between the two major components were evaluated by X-ray diffraction and Fourier-transform infrared spectroscopy (FTIR). Regardless of starch type, both the TS and E of the composite films first increased and then decreased with starch addition. Composite film made with regular starch showed higher TS and E than those with waxy starch. The addition of starch decreased WVTRs of the composite films. The introduction of gelatinized starch suppressed the crystalline peaks of chitosan film. The amino group band of chitosan molecule in the FTIR spectrum shifted from 1578 cm−1 in the chitosan film to 1584 cm−1 in composite films. These results indicated that there was a molecular miscibility between these two components.  相似文献   

14.
N-2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC), a cationic quaternary ammonium salt polymer exhibiting good solubility in water, is widely used because of its low toxicity and good biocompatibility. Herein, through ion exchange reaction, we prepared N-2-hydroxypropyltrimethyl ammonium chitosan derivatives bearing amino acid Schiff bases with good biological activities. The accuracy of the structures was verified by FT-IR and 1H NMR. The antibacterial activity, antifungal activity, and scavenging ability of DPPH radical and superoxide radical of HACC derivatives were significantly improved compared with that of HACC. In particular, HACGM (HACC-potassium 2-((2-hydroxy-3-methoxybenzylidene)amino)acetate) and HACGB (HACC-potassium 2-((5-bromo-2-hydroxybenzylidene)amino)acetate) showed good inhibitory effect on bacteria and fungi, including Staphylococcus aureus, Escherichia coli, Botrytis cinerea, and Fusarium oxysporum f. sp. cubense. The inhibition rate of HACGB on Staphylococcus aureus and Escherichia coli could reach 100% at the concentration of 0.1 mg/mL, and the inhibition rate of HACGM and HACGB on Botrytis cinerea and Fusarium oxysporum f. sp. cubense could also reach 100% at the concentration of 0.5 mg/mL. Improving antimicrobial and antioxidant activities of HACC could provide ideas and experiences for the development and utilization of chitosan derivatives.  相似文献   

15.
Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan−1) and specific activity (U mg protein−1), leading to the preservation of more than 90% of the initial total activity (U mL−1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6–7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness.  相似文献   

16.
Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2) suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFP)y1 and Tg(kdrl:mCherryci5-fli1a:negfpy7) zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP) expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs). The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF) signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. Results: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1) expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. Conclusions: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. General Significance: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial VEGF/VEGFR2 signaling.  相似文献   

17.
A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group’s structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7–23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed.  相似文献   

18.
Fabrication of porous polymer membrane with controlled drug release and efficient antibacterial performances is of great interest in biomedical fields. In this study, Laponite (LAP) nanodisks were first used to encapsulate a model antibiotic drug, tetracycline hydrochloride (TCH). Then, drug-loaded LAP nanodisks with an optimized loading efficiency (85.3 %) were mixed with poly(L-lactic acid) (PLLA) polymer to form drug-loaded composite porous membrane via solvent coasting. The structure, morphology and swelling property of the porous membranes formed with varied solvent ratio of methylene dichloride (DCM) and dimethyl formamide (DMF) in the mixture solvent were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and swelling test. In vitro drug release behavior, the cytotoxicity and the antibacterial activity of drug-loaded composite membranes were evaluated. Results showed that the TCH release was dependent on the physical structure of PLLA membrane and the presence of LAP nanodisks effectively weakened the initial burst release of TCH, and improved the sustained release property of porous PLLA membrane. The released TCH of TCH/LAP/PLLA3:1 and TCH/LAP/PLLA4:1 was 10.0 % and 5.3 % within initial 1 h, respectively. More importantly, the porous TCH/LAP/PLLA membrane was cytocompatible and displayed considerable antibacterial activity, solely associated with the loaded TCH drug, confirming its potential utility in wound dressings and tissue engineering.  相似文献   

19.
It is known that bioactivities of chitooligosaccharide (COS) are closely related to the degree of polymerization (DP); therefore, it is essential to prepare COS with controllable DP, such as chitobiose showing high antioxidant and antihyperlipidemia activities. In this study, BLAST, sequence alignment and phylogenetic analysis of characterized glycoside hydrolase (GH) 46 endo-chitosanases revealed that a chitosanase Sn1-CSN from Streptomyces niveus was different from others. Sn1-CSN was overexpressed in E. coli, purified and characterized in detail. It showed the highest activity at pH 6.0 and exhibited superior stability between pH 4.0 and pH 11.0. Sn1-CSN displayed the highest activity at 50 °C and was fairly stable at ≤45 °C. Its apparent kinetic parameters against chitosan (DDA: degree of deacetylation, >94%) were determined, with Km and kcat values of 1.8 mg/mL and 88.3 s−1, respectively. Cu2+ enhanced the activity of Sn1-CSN by 54.2%, whereas Fe3+ inhibited activity by 15.1%. Hydrolysis products of chitosan (DDA > 94%) by Sn1-CSN were mainly composed of chitobiose (87.3%), whereas partially acetylated chitosan with DDA 69% was mainly converted into partially acetylated COS with DP 2-13. This endo-chitosanase has great potential to be used for the preparation of chitobiose and partially acetylated COS with different DPs.  相似文献   

20.
Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the reaction of chitosan quaternary ammonium salt (TMCS) and epichlorohydrin. Fourier transform infrared spectroscopy (FTIR), thermal analysis, and scanning electron microscope (SEM) were used to characterize the chemical structure and surface morphology of CTMCSG hydrogel films. The physicochemical property, gentamicin sulphate release behavior, cytotoxicity, and antibacterial activity of the CTMCSG against Escherichia coli and Staphylococcus aureus were determined. Experimental results demonstrated that CTMCSG hydrogel films exhibited good water stability, thermal stability, drug release capacity, as well as antibacterial property. The inhibition zone of CTMCSG hydrogel films against Escherichia coli and Staphylococcus aureus could be up to about 30 mm. Specifically, the increases in maximum decomposition temperature, mechanical property, water content, swelling degree, and a reduction in water vapor permeability of the hydrogel films were observed as the amount of the cross-linking agent increased. The results indicated that the CTMCSG-4 hydrogel film with an interesting physicochemical property, admirable antibacterial activity, and slight cytotoxicity showed the potential value as excellent antibacterial wound dressing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号