首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
We studied the histologic and stereological changes induced in the right ovary of newly hatched chicks treated with LH during their embryonic development. Results indicate that LH administration causes a diminution in size and total volume (P < 0.01) of the right ovary, as well as a decrease in the total volume of lacunar channels, blood vessels, and interstitium. Other changes obtained after LH treatment were a reduction (P < 0.001) in the number of germ cells, as well as an increase in the total volume of interstitial cell cords (P < 0.01). This expansion is due to the increase of cellular volume of interstitial cells (P < 0.001) and not to their number, which decrease in the LH-treated right ovary. All these modifications were similar to those occurring in the regressing right ovary during development. The findings suggest that the right ovary of the newly hatched chick is able to respond to LH treatment during embryonic development, inducing marked histologic changes that accelerate its regression.  相似文献   

2.
Two experiments were conducted to determine if administration of progesterone within a low, subluteal range (0.1-1.0 ng/mL) blocks the luteinizing hormone (LH) surge (experiments 1 and 2) and ovulation (experiment 2) in lactating dairy cows. In experiment 1, progesterone was administered to cycling, lactating dairy cows during the luteal phase of the estrous cycle using a controlled internal drug release (CIDR) device. CIDRs were pre-incubated in other cows for either 0 (CIDR-0), 14 (CIDR-14) or 28 days (CIDR-28). One group of cows received no CIDRs and served as controls. One day after CIDR insertion, luteolysis was induced by two injections of prostaglandin (PG) F(2alpha) (25 mg) at 12 h intervals. Two days after the first injection, estradiol cypionate (ECP; 3 mg) was injected to induce a LH surge. Concentrations of progesterone after luteolysis were 0.11, 0.45, 0.78 and 1.20 ng/mL for cows treated with no CIDR, CIDR-28, CIDR-14, and CIDR-0, respectively. LH surges were detected in 4/4 controls, 4/5 CIDR-28, 2/5 CIDR-14 and 0/5 CIDR-0 cows following ECP. In experiment 2, progesterone was administered to cycling, lactating, Holstein cows during the luteal phase of the estrous cycle as in experiment 1. Luteolysis was induced as in experiment 1. The occurrence of an endogenous LH surge and ovulation were monitored for 7 days. Concentrations of progesterone after luteolysis were 0.13, 0.30, 0.70 and 1.20 ng/mL for cows treated with no CIDR, CIDR-28, CIDR-14 and CIDR-0, respectively. LH surges and ovulation were detected in 5/5 controls, 3/7 CIDR-28, 0/5 CIDR-14 and 0/5 CIDR-0 cows. It was concluded that low concentrations of progesterone can reduce the ability of either endogenous or exogenous estradiol to induce a preovulatory surge of LH and ovulation.  相似文献   

3.
We examined whether progesterone (P4)-induced suppression of LH release in cattle can be overcome by an increased dose of exogenous gonadotropin-releasing hormone (GnRH) or pretreatment with estradiol (E2). In Experiment 1, postpubertal Angus-cross heifers (N = 32) had their 2 largest ovarian follicles ablated 5 d after ovulation. Concurrently, these heifers were all given a once-used, intravaginal P4-releasing insert (CIDR), and they were randomly assigned to be given either prostaglandin F (Low-P4) or no treatment (High-P4) at follicle ablation, and 12 h later. Six days after emergence of a new follicular wave, half of the heifers in each group (n = 8) were given either 100 or 200 μg of GnRH i.m. Plasma luteinizing hormone (LH) concentrations were higher in the Low- vs High-P4 groups, and in heifers given 200 vs 100 μg of GnRH (mean ± SEM 15.4 ± 2.2 vs 9.1 ± 1.2, and 14.8 ± 2.1 vs 9.8 ± 1.4 ng/mL, respectively; P ≤ 0.01). Ovulation rate was higher (P = 0.002) in the Low-P4 group (15/16) than in the High-P4 group (6/16), but it was not affected by GnRH dose (P = 0.4). In Experiment 2, heifers (n = 22) were treated similarly, except that 5.5 d after wave emergence, half of the heifers in each group were further allocated to be given either 0.25 mg estradiol benzoate i.m. or no treatment, and 8 h later, all heifers were given 100 μg GnRH i.m. Both groups treated with E2 (Low- and High-P4) and the Low-P4 group without E2 had higher peak plasma LH concentrations compared to the group with high P4 without E2 (12.6 ± 1.8, 10.4 ± 1.8, 8.7 ± 1.3, and 3.9 ± 1.2 ng/mL, respectively; (P < 0.04)). However, E2 pretreatment did not increase ovulation rates in response to GnRH (P = 0.6). In summary, the hypotheses that higher doses of GnRH will be more efficacious in inducing LH release and that exogenous E2 will increase LH release following treatment with GnRH were supported, but neither significantly increased ovulation rate.  相似文献   

4.
The effect of the luteinizing hormone (LH) on the oogenesis of ovaries from newly-hatched chicks treated in vivo on days 13, 15, and 17 of embryonic development was analyzed. Changes in oogonial proliferation, meiotic prophase, degeneration of germ cells, and primordial follicular organization were determined. Results indicate that the total number of germ cells was not affected by the LH treatment, but significant differences existed in the number of oogonia and oocytes between the ovaries of control and LH-treated chicks. LH treatment increased the percentage of oocytes and diminished the percentage of oogonia. The mitotic activity of oogonia and degeneration of germ cells decreased, but the number of follicles during development increased in LH-treated ovaries. These findings suggest that LH treatment might trigger a cascade of endocrine events, resulting in inhibition of oogonial proliferation and induction of the meiotic prophase and follicle formation.  相似文献   

5.
Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.  相似文献   

6.
The working hypothesis that a low plane of nutrition during the prepubertal period delays puberty in heifers by retarding the prepubertal increase in secretion of luteinizing hormone (LH) was investigated. Secretion of LH and the responsiveness of the pituitary to LH-releasing hormone (LHRH) were compared in heifers fed a growing diet (which allowed spontaneous occurrence of puberty; n = 12; control) or an energy deficient diet (which delayed puberty; n = 11; delayed) during the prepubertal period. The dietary treatments were initiated when the heifers were 299 +/- 14 (mean +/- SD) d of age (d 0 of the experiment) and continued until d 175 of the experiment (474 +/- 14 d of age). Weight gains were .79 +/- .05 (mean +/- SE) and .21 +/- .03 kg X head-1 X d-1 for control and delayed heifers, respectively. Puberty occurred on d 120 +/- 14 of the experiment (428 +/- 13 d of age) in control heifers, whereas none of the delayed heifers attained puberty during the feeding period. Serum concentration of LH and the frequency of LH pulses increased rapidly during the 175-d feeding period in control heifers. In delayed heifers, serum LH concentration increased less rapidly and no increase in pulse frequency was detected during the experimental period. Amplitude of LH pulses tended to be higher in control than delayed heifers. Responsiveness of LH secretion to LHRH was lower in delayed than control heifers. It is speculated that failure of secretion of LH to increase is the causative factor for delayed puberty when dietary energy is limited during the prepubertal period in heifers.  相似文献   

7.
We tested the hypothesis that rapidly expressed inhibitory effects of estradiol (E) on luteinizing hormone (LH) release in the male are attributable, in part, to suppression of luteinizing hormone-releasing hormone (LHRH) release. Hypophyseal-portal cannulated, castrated male sheep were infused with E (15 ng/kg/hr) or vehicle. Portal and jugular blood samples were collected at 10-min intervals for 4 hr before, and for either 12 hr (E, n = 4; vehicle, n = 4) or 24 hr (E, n = 8; vehicle, n = 3) after the start of infusion. In animals sampled for 16 hr, temporal changes in both LHRH and LH were assessed. In animals sampled for 28 hr, only LH data were analyzed. Before either the 12-hr or 24-hr infusion, LHRH and/or LH mean concentrations, pulse amplitude and interpulse interval (IPI) did not differ between E- and vehicle-infused animals. In animals sampled for 16 hr, no effects of time or steroid × time interactions were detected for mean LHRH and LHRH pulse amplitude; however, both were greater (P < 0.01) in vehicle-infused than in E-infused males. LHRH IPI was unaffected by infusion. In contrast, both mean LH and LH pulse amplitude declined (P < 0.01) within 4–8 hr after the start of E infusion, whereas mean LH IPI was unaffected. In animals sampled for 28 hr, an effect of time (P < 0.01) and a steroid × time interaction (P < 0.01) was detected for mean LH, and there was an effect of time (P < 0.01) on LH pulse amplitude. Mean LH IPI was not affected. Our results show that in male sheep E rapidly reduces LH release in the absence of a detectable change in LHRH release.  相似文献   

8.
The secretion of luteinizing hormone in ewes of Finnish Landrace during estrus. Acta vet. scand. 1979, 20, 216–223. — Luteinizing hormone immunoreactivity was measured in the venous plasma of four cycling Finnish Landrace sheep during the breeding season in connection with one synchronized estrus and the subsequent one. The ewes were slaughtered after the second estrus to establish the number of ovulations. To determine the LH concentration, a heterologous method of assay was used; this was based on the cross reaction of sheep plasma LH in a human LH radioimmunoassay system.As a result of the investigation, it was found that the peaks of LH were lower during the time of synchronized estrus and that these peaks occurred earlier than in the subsequent estrus. However, the differences were not statistically significant. On account of the limited material, the effect of the occurrence of the LH peak on the number of ovulations could not be established.  相似文献   

9.
The effect of estrus induction by cabergoline on gonadotropin and steroid hormone responses was examined in anestrous bitches. Eleven beagles were used in the study; seven were included in the estrus induction group and four were included in the spontaneous estrus group. Cabergoline was orally administered to the estrus induction group at 5 µg/kg once daily for four weeks, or until hemorrhagic discharge was detected. The inter-estrus interval in the estrus induction group was significantly shorter than the previous estrus interval. Bitches that showed proestrus within four weeks of treatment showed increased luteinizing hormone (LH) pulse frequency and, subsequently, increased estradiol (E2) levels. Prolactin (PRL) levels declined promptly after treatment, except in one bitch that did not show proestrus during the cabergoline treatment period. There was a significant correlation between the time to proestrus induction and the reduction in PRL levels. A positive correlation was found between the LH levels two weeks after cabergoline administration and PRL reduction. This study demonstrates that an abrupt reduction in PRL is likely to be important for initiation of estrus in bitches. A reduction in PRL indirectly leads to an increase in LH pulse frequency, which regulates follicular development in bitches. However, if the period from the end of the previous estrus to the cabergoline treatment is short, it may take some time to show proestrus without increasing E2 levels, even if the LH level increases after cabergoline administration.  相似文献   

10.
Both the mean concentration and the pulse pattern of growth hormone (GH) in the blood are important for the metabolism and body growth of calves. Transportation is reported to decrease blood GH concentrations in prepubertal male calves. However, the effect of transportation on GH pulsatility remains unknown. Because transportation is important in moving these calves from calf‐production farms to markets or fattening farms, we tested whether transportation decreases their GH pulse frequency. Five calves were subjected to transportation by trucking (transport group), while five were left in their shed (non‐transport group). Both groups were subsequently subjected to frequent blood sampling at 15‐min intervals for 5 h. In the transport group, the cortisol concentrations increased in the first hour (P < 0.05) but significantly decreased thereafter (P < 0.05) to lower than those of the non‐transport group. During the 5‐hour study period, the transport group displayed a similar mean GH concentration relative to the non‐transport group, but displayed a delayed first GH pulse, and a lower number of GH pulses than the non‐transport group (P < 0.05). Hence, transportation is suggested to decrease GH pulse frequency under abnormal cortisol states, presumably suppressing metabolism and body growth in prepubertal male calves.  相似文献   

11.
Follicle‐stimulating hormone (FSH) and luteinizing hormone (LH) have a central role in follicle growth, maturation and oestrus, but no clear pathway in the seasonal oestrus of yak (Bos grunniens) has been found. To better understand the role of FSH and LH in seasonal oestrus in the yak, six yaks were slaughtered while in oestrus, and the pineal gland, hypothalamus, pituitary gland, and gonads were collected. Using real‐time PCR and immunohistochemical assays, we determined the mRNA and protein expression of the FSH and LH receptors (FSHR and LHR) in these organs. The analysis showed that the FSHR mRNA expression level was higher in the pituitary gland tissue compared with LHR (< .01) during oestrus. By contrast, there was low expression of FSHR and LHR mRNA in the pineal gland and hypothalamus. FSHR mRNA expression was higher than that of LHR (< .05) in the ovary, whereas LHR mRNA expression was higher than that of FSHR (< .01) in the uterus. FSHR and LHR proteins were located in the pinealocyte, synaptic ribbon and synaptic spherules of the pineal gland and that FSH and LH interact via nerve fibres. In the hypothalamus, FSHR and LHR proteins were located in the magnocellular neurons and parvocellular neurons. FSHR and LHR proteins were localized in acidophilic cells and basophilic cells in the pituitary gland, and in surface epithelium, stromal cell and gland epithelium in the uterus. In the ovary, FSHR and LHR protein were present in the ovarian follicle. Thus, we concluded that FSHR and LHR are located in the pineal gland, hypothalamus, pituitary and gonad during oestrus in the yak. However, FSHR was mainly expressed in the pituitary gland and ovaries, whereas LHR was mainly expressed in the pituitary gland and uterus.  相似文献   

12.
Following parturition, all cows display a wave of ovarian follicular growth, but a large proportion fail to generate a preovulatory rise in estradiol, and hence fail to ovulate. Follicle-stimulating hormone (FSH) exists as multiple isoforms in the circulation depending on the type and extent of glycosylation, and this has pronounced effects on its biological properties. This study examined differences in plasma FSH, estradiol, and inhibin A concentrations, and the distribution of FSH isoforms in cows with ovulatory or atretic dominant follicles during the first postpartum follicle wave. Plasma FSH isoform distribution was examined in both groups during the period of final development of the dominant follicle by liquid phase isoelectric focusing. Cows with an ovulatory follicle had higher circulating estradiol and inhibin A concentrations, and lower plasma FSH concentrations. The distribution of FSH isoforms displayed a marked shift toward the less acidic isoforms in cows with ovulatory follicles. A higher proportion of the FSH isoforms had a pI>5.0 in cows with ovulatory follicles compared to those with atretic follicles. In addition, cows with ovulatory follicles had greater dry matter intake, superior energy balance, elevated circulating concentrations of insulin and insulin-like growth factor-I, and lower plasma nonesterified fatty acids. The shift in FSH isoforms toward a greater abundance of the less acidic isoforms appears to be a key component in determining the capability for producing a preovulatory rise in estradiol, and this shift in FSH isoforms was associated with more favorable bioenergetic and metabolic status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号