首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stretch-activated ion channels of animal, plant, bacterial, and fungal cells are implicated in mechanotransduction and osmoregulation. A new class of channel has now been described that is stretch-inactivated. These channels occur in neurons, where they coexist with stretch-activated channels. Both channels are potassium selective. The differing stretch sensitivities of the two channels minimize potassium conductance over an intermediate range of tension, with the consequence that, over this same range, voltage-gated calcium channels are most readily opened. Thus, by setting the relation between membrane tension and transmembrane calcium fluxes, stretch-sensitive potassium channels may participate in the control of calcium-dependent motility in differentiating, regenerating, or migrating neurons.  相似文献   

2.
Biophysical studies of ion channels   总被引:1,自引:0,他引:1  
Ionic channels, the integral membrane proteins responsible for the brain's electrical activity, have long been studied with standard electrophysiological and biochemical methods. Recently, however, newly developed electrical and molecular biological methods have been brought to bear on long-standing questions in neurobiology. Goals of current channel research include elucidating the primary amino acid sequence and three-dimensional structure of channel species; the mechanisms of synthesis, sorting, membrane insertion, and degradation; and aspects of function such as gating, ion permeation and selectivity, and regulation. The latest research combines the new biochemical and electrophysiological techniques to reveal relations between molecular structure and function.  相似文献   

3.
The atrionatriuretic peptide (ANP) is released from atrial cells in response to increased extracellular fluid volume and reduces sodium absorption by the kidney, thus reducing the blood volume. In this report, ANP suppressed the calcium and sodium currents in rat and guinea pig ventricular myocytes. The suppression of sodium current was caused by enhanced permeability of the sodium channel to calcium without significant changes in the kinetics or the tetrodotoxin sensitivity of the channel. Thus, ANP may regulate the sodium channel by altering its cationic selectivity site to calcium, thereby repressing the sodium current. The suppression of sodium and calcium channels and the resultant depressed excitability of the atrial cells may help to regulate ANP secretion.  相似文献   

4.
5.
6.
Structure and function of voltage-sensitive ion channels   总被引:61,自引:0,他引:61  
Voltage-sensitive ion channels mediate action potentials in electrically excitable cells and play important roles in signal transduction in other cell types. In the past several years, their protein components have been identified, isolated, and restored to functional form in the purified state. Na+ and Ca2+ channels consist of a principal transmembrane subunit, which forms the ion-conducting pore and is expressed with a variable number of associated subunits in different cell types. The principal subunits of voltage-sensitive Na+, Ca2+, and K+ channels are homologous members of a gene family. Models relating the primary structures of these principal subunits to their functional properties have been proposed, and experimental results have begun to define a functional map of these proteins. Coordinated application of biochemical, biophysical, and molecular genetic methods should lead to a clear understanding of the molecular basis of electrical excitability.  相似文献   

7.
植物根细胞离子通道研究进展   总被引:5,自引:0,他引:5  
根细胞膜上存在各种离子通道.电生理学的研究表明,根细胞离子通道对于矿质吸收、转运及植物耐盐具有重要作用.该文概述了根细胞K+通道、阴离子通道和各种非选择性阳离子通道的最新研究进展,并对近期有关离子通道和植物耐盐性关系的研究进行了总结.K+通道存在于大多数的植物细胞中,其对K+的选择性远高于其他阳离子,K+通道的存在对于营养元素的吸收,尤其是K+的低亲和性吸收具有重要的意义,同时也为其他离子的出入维持了一个较为稳定的膜电势.阴离子通道激活所引起的质膜去极化可以激发非选择性的阳离子流,在盐胁迫下,可通透Cl的阴离子通道的开放是植物对胞内Cl的一种重要调控机制.由于非选择性的阳离子通道(Non-selective cation channels,NSCCs)的多样性及其对一价阳离子的低选择性,近年来NSCCs的研究受到广泛关注.NSCCs被认为参与了植物多种生理过程,包括营养元素的吸收、膨压控制、胞间转运、信号转导以及毒害离子的吸收,尤其是Na+的吸收.   相似文献   

8.
Organization of ion channels in the myelinated nerve fiber   总被引:8,自引:0,他引:8  
The functional organization of the mammalian myelinated nerve fiber is complex and elegant. In contrast to nonmyelinated axons, whose membranes have a relatively uniform structure, the mammalian myelinated axon exhibits a high degree of regional specialization that extends to the location of voltage-dependent ion channels within the axon membrane. Sodium and potassium channels are segregated into complementary membrane domains, with a distribution reflecting that of the overlying Schwann or glial cells. This complexity of organization has important implications for physiology and pathophysiology, particularly with respect to the development of myelinated fibers.  相似文献   

9.
The transport of ions across the membranes of cells and organelles is a prerequisite for many of life's processes. Transport often involves very precise selectivity for specific ions. Recently, atomic-resolution structures have been determined for channels or pumps that are selective for sodium, potassium, calcium, and chloride: four of the most abundant ions in biology. From these structures we can begin to understand the principles of selective ion transport in terms of the architecture and detailed chemistry of the ion conduction pathways.  相似文献   

10.
11.
This study investigates transport capacity models based on different dominant variables-shear stress, stream power, unit stream power, flow discharge, flow velocity, and energy slope – in a model of unsteady and non-equilibrium sediment transport in alluvial channels. The model simulates fully coupled system of water flow, suspended sediment, and bed load sediment transport processes in two-layer system of water flow phase and movable bed. The model employs conservation of mass equation for the water in both the layers; suspended sediment in the water flow phase; sediment in the movable bed layer; and the momentum equation for the water flow in the flow phase. The system is closed by relating the sediment flux in the movable bed layer to the sediment concentration in the same layer by employing the kinematic wave theory. Using the sediment transport capacity expression with different dominant variables, a series of numerical experiments are carried out for unsteady and non-equilibrium sediment transport. The results seem theoretically reasonable for hypothetical cases. The model is calibrated and validated using different experimental data sets. The calibrated value for the transport capacity model’s exponent (ki) is found to be 1.50, 1.65, 0.24, 0.56, 4.80, and 0.22 for shear stress, stream power, unit stream power, discharge, velocity, and slope approaches, respectively. The numerical investigation results show that transport capacity model based on any dominant variable can be employed for modelling unsteady and non-equilibrium sediment transport.  相似文献   

12.
Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity   总被引:23,自引:0,他引:23  
Synthetic peptide segments of the CD4 molecule were tested for their ability to inhibit infection of CD4+ cells by the human immunodeficiency virus (HIV) and to inhibit HIV-induced cell fusion. A peptide mixture composed of CD4(76-94), and synthesis side products, blocked HIV-induced cell fusion at a nominal concentration of 125 micromolar. Upon high-performance liquid chromatography, the antisyncytial activity of the peptide mixture was found not in the fraction containing the peptide CD4(76-94) itself, but in a side fraction containing derivatized peptide products generated in the automated synthesis. Derivatized deletion and substitution peptides in the region CD4(76-94) were used to demonstrate sequence specificity, a requirement for benzyl derivatization, and a core seven-residue fragment required for antisyncytial activity. A partially purified S-benzyl-CD4(83-94) peptide mixture inhibited HIV-induced cell fusion at a nominal concentration of less than or equal to 32 micromolar. Derivatized CD4 peptides blocked cell fusion induced by several HIV isolates and by the simian immunodeficiency virus, SIV, and blocked infection in vitro by four HIV-1 isolates with widely variant envelope gene sequences. Purified CD4(83-94) dibenzylated at cysteine 86 and glutamate 87 possessed antisyncytial activity at 125 micromolar. Derivatization may specifically alter the conformation of CD4 holoreceptor peptide fragments, increasing their antiviral efficacy.  相似文献   

13.
Decay accelerating factor (DAF) is anchored to the plasma membrane by a glycophospholipid (GPI) membrane anchor covalently attached to the COOH-terminus of the protein. A hydrophobic domain located at the COOH-terminus is required for anchor attachment; DAF molecules lacking this domain are secreted. Replacement of the COOH-terminal hydrophobic domain with a signal peptide that normally functions in membrane translocation, or with a random hydrophobic sequence, results in efficient and correct processing, producing GPI-anchored DAF on the cell surface. The structural requirements for GPI anchor attachment and for membrane translocation are therefore similar, presumably depending on overall hydrophobicity rather than specific sequences.  相似文献   

14.
The coupling of neurotransmitter receptors to ion channels in the brain   总被引:28,自引:0,他引:28  
Recent studies on the action of neurotransmitters on hippocampal pyramidal cells indicate that different neurotransmitter receptors that use either the same or different coupling mechanisms converge onto the same ion channel. Conversely, virtually all of the neurotransmitters act on at least two distinct receptor subtypes coupled to different ion channels on the same cell. The existence of both convergence and divergence in the action of neurotransmitters results in a remarkable diversity in neuronal signaling.  相似文献   

15.
Open channels in sea ice may be acting as sources of atmospheric ions.  相似文献   

16.
The anomalous rectifier potassium current in Aplysia neurons was examined to determine the immediate cause of an increase in conductance induced by serotonin and mediated by adenosine 3',5'-monophosphate. Voltage-dependent cesium ion block and steady-state current power spectral density were measured under voltage clamp before and after application of serotonin. The amplitude of the anomalous rectifier conductance was increased by adding serotonin, but the shapes of the conductance-voltage curve and the power spectrum were not altered. Calculation of the number of functional channels and of the single-channel conductance from the power spectra indicates that the serotonin-induced increase in conductance resulted from an increase in the number of functional channels, while the single-channel conductance and the open-channel probability were unchanged.  相似文献   

17.
Efforts to solve the epidemiologic puzzle of AIDS in Africa are complicated by the presence of multiple human retroviruses. Simple serologic tests that unambiguously distinguish among infections by these retroviruses are essential. To that end, a partially conserved immunoreactive epitope was identified in the transmembrane glycoproteins of human immunodeficiency viruses (HIV) types 1 and 2. Synthetic peptides derived from these conserved domains were used in sensitive and specific immunoassays that detect antibodies in sera from patients infected with HIV-1 or HIV-2. By making single amino acid substitutions in the HIV-1 peptide, it was possible to demonstrate HIV-1 strain-specific antibody responses to this epitope. Such custom-designed peptides synthesized from this domain are likely to detect newly discovered HIV types, define infection with specific HIV strains, and allow detection of group-common antibodies.  相似文献   

18.
Although it is generally agreed that general anesthetics ultimately act on neuronal ion channels, there is considerable controversy over whether this occurs by direct binding to protein or secondarily by nonspecific perturbation of lipids. Very pure optical isomers of the inhalational general anesthetic isoflurane exhibited clear stereoselectivity in their effects on particularly sensitive ion channels in identified molluscan central nervous system neurons. At the human median effect dose (ED50) for general anesthesia, the (+)-isomer was about twofold more effective than the (-)-isomer both in eliciting the anesthetic-activated potassium current IK(An) and in inhibiting a current mediated by neuronal nicotinic acetylcholine receptors. For inhibiting the much less sensitive transient potassium current IA, the (-)-isomer was marginally more potent than the (+)-isomer. Both isomers were equally effective at disrupting lipid bilayers.  相似文献   

19.
The mechanisms underlying the ontogeny of voltage-gated ion channels in muscle are unknown. Whether expression of voltage-gated channels is dependent on mitogen withdrawal and growth arrest, as is generally true for the induction of muscle-specific gene products, was investigated in the BC3H1 muscle cell line by patch-clamp techniques. Differentiated BC3H1 myocytes expressed functional Ca2+ and Na+ channels that correspond to those found in T tubules of skeletal muscle. However, Ca2+ and Na+ channels were first detected after about 5 days of mitogen withdrawal. In order to test whether cellular oncogenes, as surrogates for exogenous growth factors, could prevent the expression of ion channels whose induction was contingent on mitogen withdrawal, BC3H1 cells were modified by stable transfection with oncogene expression vectors. Expression vectors containing v-erbB, or c-myc under the control of the SV40 promoter, delayed but did not prevent the appearance of functional Ca2+ and Na+ channels. In contrast, transfection with a Val12 c-H-ras vector, or cotransfection of c-myc together with v-erbB, suppressed the formation of functional Ca2+ and Na+ channels for greater than or equal to 4 weeks. Potassium channels were affected neither by mitogenic medium nor by transfected oncogenes. Thus, the selective effects of certain oncogenes on ion channel induction corresponded to the suppressive effects of mitogenic medium.  相似文献   

20.
Voltage-dependent ion channels are responsible for electrical signaling in neurons and other cells. The main classes of voltage-dependent channels (sodium-, calcium-, and potassium-selective channels) have closely related molecular structures. For one member of this superfamily, the transiently voltage-activated Shaker H4 potassium channel, specific amino acid residues have now been identified that affect channel blockade by the small ion tetraethylammonium, as well as the conduction of ions through the pore. Furthermore, variation at one of these amino acid positions among naturally occurring potassium channels may account for most of their differences in sensitivity to tetraethylammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号