首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rosemary, whose major caffeoyl-derived and diterpenoid ingredients are rosmarinic acid, carnosol, and carnosic acid, is an important source of natural antioxidants and is being recognized increasingly as a useful preservative, protectant, and even as a potential medicinal agent. Understanding the stability of these components and their mode of interaction in mixtures is important if they are to be utilized to greatest effect. A study of the degradation of rosmarinic acid, carnosol, carnosic acid, and a mixture of the three was conducted in ethanolic solutions at different temperatures and light exposure. As expected, degradation increased with temperature. Some unique degradation products were formed with exposure to light. Several degradation products were reported for the first time. The degradation products were identified by HPLC/MS/MS, UV, and NMR. The degradation of rosemary extract in fish oil also was investigated, and much slower rates of degradation were observed for carnosic acid. In the mixture of the three antioxidants, carnosic acid serves to maintain levels of carnosol, though it does so at least in part at the cost of its own degradation.  相似文献   

2.
Methods were developed to identify and select accessions of rosemary, Rosmarinus officinalis (L.), producing optimum antioxidant activity. Extracts from 12 different rosemary accessions, using three solvents of varying polarity, were assayed for their antioxidant activity, and their major antioxidant compounds were identified and quantified by high-performance liquid chromatography (HPLC). Carnosic acid concentrations were correlated with (i) the free radical scavenging activity of these extracts, as measured by the 2,2-diphenyl-1-picrylhydrazyl assay (adjusted R(2) = 77.3%) and (ii) their inhibition of linoleic acid oxidation, as measured by the beta-carotene assay (adjusted R(2) = 44.1%). The correlation was broadly confirmed by the production of volatile aldehydes as measured by the hexanal assay. The variation of carnosic acid concentrations in extracts of 29 accessions, grown in field trials at three sites in England, was determined.  相似文献   

3.
Ocimum species are used in traditional Iranian medicine, as a culinary herb, and as a well-known source of flavoring principles. Horticultural characteristics, including quantitative and qualitative traits along with the chemical variation of phenolic acids, of 23 accessions of basil (Ocimum basilicum L.) from Iran were studied. Morphological studies of accessions showed a high level of variability in recorded traits. Quantification of phenolic acids was determined using high-performance liquid chromatography and showed drastic variations between accessions. Chemical studies revealed that rosmarinic acid is the predominant phenolic acid present in both flower and leaf tissues. Unusual basil accessions were identified that can serve as genetic sources of phenolic acids for crop improvement.  相似文献   

4.
Using the low-density lipoprotein (LDL), collagen, and thrombin models, we report here that the rosemary extracts (REs), either the aqueous (REw) or the acetonic (REA), all possessed many antiglycation-related features, and the effective concentrations required were as follows: 0.1 mg/mL for suppressing the relative electrophoretic mobility, 1.3 microg/mL for anticonjugated diene induction, 0.5 mg/mL for inhibition of thiobarbituric acid reactive substances production, 0.1 mg/mL for AGEs (advanced glycation end products) formation, 0.1 mg/mL to block glucose incorporation, and 0.05 mg/mL as an effective anti-antithrombin III. Using high-performance liquid chromatography/mass spectrometry, we identified five major constituents among eight major peaks, including rosmarinic acid, carnosol, 12-methoxycarnosic acid, carnosic acid, and methyl carnosate. In the LDL model, REA was proven to be more efficient than REw; yet, the reverse is true for the collagen and the thrombin III models, the reason of which was ascribed to the higher lipid-soluble antioxidant content (such as rosmarinic acid, carnosol, carnosic acid, 12-methoxycarnosic acid and methyl carnosate) in REA than in REw and the different surface lipid characteristics between LDL and collagen; although to act as anti-AGEs, both extracts were comparable. To assist the evidence, a larger 2,2-diphenyl-1-picrylhydrazyl radical scavenging capability with less total polyphenolic content was found in REA. We conclude that rosemary is an excellent multifunctional therapeutic herb; by looking at its potential potent antiglycative bioactivity, it may become a good adjuvant medicine for the prevention and treatment of diabetic, cardiovascular, and other neurodegenerative diseases.  相似文献   

5.
For the first time, the potent but unstable antioxidative diterpene carnosic acid could be enriched from an aqueous extract of rosemary (Rosmarinus officinalis L.) by isoelectric focused adsorptive bubble chromatography. Enrichment of carnosic acid in the foam was influenced by the pH value and the flow rate of the foam-forming gas. Efficiency was highest with diluted samples at pH 4. Under these conditions, the conversion of carnosic acid to carnosol was negligible. Transfer of carnosic acid to the foam from a standard solution in the presence of saponin as surfactive substance was similar to that from the aqueous rosemary extract.  相似文献   

6.
The distribution of six compounds with three different polyphenol skeletons have been studied in Rosmarinus officinalis: phenolic diterpenes (carnosic acid, carnosol, and 12-O-methylcarnosic acid), caffeoyl derivatives (rosmarinic acid), and flavones (isoscutellarein 7-O-glucoside and genkwanin), each showing a characteristic behavior and distribution during the vegetative cycle. Only in leaves were all six compounds present, and the highest accumulation rate was related with the young stages of development. Rosmarinic acid showed the highest concentrations of all the polyphenols in all organs. The distribution of this acid in leaves, flowers, and stems suggests that in the first stages of flower growth, levels were due to in situ biosynthesis, and in the last stages, the contribution of transport phenomena was increased. The antioxidant activity of six extracts with different polyphenolic composition was evaluated in aqueous and lipid systems. The results clearly suggest that rosemary extracts are excellent antioxidants in both aqueous and lipid systems.  相似文献   

7.
The effects of 24 h supplementation of Caco-2 cells with carnosic acid and carnosol, and their activities against 5 microM oleic acid hydroperoxide (OAHPx)-mediated oxidative stress, were investigated. At 24 h of incubation, under nonstressed and stressed conditions, both compounds at 25, 50, and 100 microM supplement concentrations reduced catalase activity, whereas changes in glutathione peroxidase and superoxide dismutase activities varied depending upon the concentrations. Relative to control cultures, carnosic acid and carnosol reduced membrane damage by 40-50% when stressed by OAHPx. Carnosic acid and carnosol inhibited lipid peroxidation by 88-100% and 38-89%, respectively, under oxidative stress conditions. Both compounds significantly lowered DNA damage induced by OAHPx. Results of this study suggest that antioxidant activities of carnosic acid and carnosol could be partly due to their ability to increase or maintain glutathione peroxidase and superoxide dismutase activities.  相似文献   

8.
Subcritical water extraction of antioxidant compounds from rosemary plants   总被引:7,自引:0,他引:7  
Subcritical water extraction at several temperatures ranging from 25 to 200 degrees C has been studied to selectively extract antioxidant compounds from rosemary leaves. An exhaustive characterization of the fractions obtained using subcritical water at different temperatures has been carried out by LC-MS, and the antioxidant activities of the extracts have been measured by a free radical method (DPPH). Results indicate high selectivity of the subcritical water toward the most active compounds of rosemary such as carnosol, rosmanol, carnosic acid, methyl carnosate, and some flavonoids such as cirsimaritin and genkwanin. The antioxidant activity of the fractions obtained by extraction at different water temperatures was very high, with values around 11.3 microg/mL, comparable to those achieved by SFE of rosemary leaves. A study of the effect of the temperature on the extraction efficiency of the most typical rosemary antioxidant compounds has been performed.  相似文献   

9.
The aim of the present work is to study whether the introduction of rosemary plant byproduct, from plant steam distillation, in daily Segurena sheep feeding allows the transfer of active antioxidant components to lamb meat, without detriment to the animal productivity. For this, 36 Segurena ewes were assigned randomly to three homogeneous groups. One group was fed a basal diet as a control and the diet of the other two groups was modified by substituting 10 or 20% of the control diet (respectively) with distilled rosemary leaves. Chromatographic analysis allowed the identification of 11 polyphenolic components previously identified in the rosemary and basal diet pellets, respectively. Among them, rosmarinic acid, carnosol, and carnosic acid were the phenolic components that had a significantly increased presence ( P < 0.05) in the lamb meat from sheep mothers fed this aromatic herb, when compared to the control group. The incorporation of this byproduct into the animal diet favored the antioxidant capacity of these lamb meat samples. Fresh meat produced on rosemary had higher total ferric reducing antioxidant power (FRAP) ( P < 0.05), greater ability to reduce ABTS*+, and lower IC50 (DPPH*) ( P < 0.05) values when compared to the control group. Because no statistically significant differences were detected among the results obtained from the lamb meat belonging to the different ewe groups fed rosemary leaf extract (10 or 20%), it can be concluded that the incorporation of distilled rosemary leaves at a rate of 10% of the ewes' diet should be enough to improve the lamb meat antioxidant status.  相似文献   

10.
A solution of carnosic acid quinone, which is a radical chain-termination product having no antioxidant activity in the antioxidant reaction of carnosic acid, recovers potent antioxidant activity upon standing. The HPLC analysis of an aged solution of carnosic acid quinone revealed that several antioxidants are produced in the solution. From the time-course and quantitative analyses of the formation of the products and their structural analysis, an antioxidant mechanism from carnosic acid quinone is proposed that includes a redox reaction of carnosic acid quinone in addition to the isomerization to lactone derivatives. In the first stage of antioxidation, carnosic acid, the reduction product from carnosic acid quinone, contributes to the potent antioxidant activity of the solution. This proposed mechanism can explain one of the reasons for the strong antioxidant activity of the extract of the popular herbs sage and rosemary.  相似文献   

11.
In this study, we evaluated how increased cation supply can alleviate the toxic effects of NaCl on plants and how it affects essential oils (EOs) and phenolic diterpene composition in leaves of rosemary (Rosmarinus officinalis L.) plants grown in pots. Two concentrations of the chloride salts KCl, CaCl2, MgCl2, and FeCl3 were used together with 100 mM NaCl to study the effects of these nutrients on plant mineral nutrition and leaf monoterpene, phenolic diterpene, and EO composition. The addition of 100 mM NaCl, which decreased K+, Ca2+, and Mg2+ concentrations with increasing Na+ in leaves, significantly altered secondary metabolite accumulation. Addition of MgCl2 and FeCl3 altered leaf EO composition in 100 mM NaCl–treated rosemary plants while KCl and CaCl2 did not. Furthermore, addition of CaCl2 promoted the accumulation of the major phenolic diterpene, carnosic acid, in the leaves. The carnosol concentration was reduced by the addition of KCl to salt‐stressed plants. It is concluded that different salt applications in combination with NaCl treatment may have a pronounced effect on phenolic diterpene and EO composition in rosemary leaves thus indicating that ionic interactions may be carefully considered in the cultivation of these species to achieve the desired concentrations of these secondary metabolites.  相似文献   

12.
To determine the antioxidant mechanism of food phenolics against the oxidation of food components, the reaction of carnosic acid, an antioxidative constituent of the popular herbs sage and rosemary, was investigated in the presence of ethyl linoleate and the radical oxidation initiator 2,2'-azobis(2,4-dimethylvaleronitrile). During this process, carnosic acid was oxidized to an o-quinone and a hydroxy p-quinone, the chemical structures of which were confirmed by physical and chemical techniques. From a quantitative time course analysis of the production of these quinones, an antioxidant mechanism of carnosic acid is proposed, consisting of the oxidative coupling reaction with the peroxyl radical at the 12- or 14-position of carnosic acid and subsequent degradation reactions.  相似文献   

13.
The molecular compositions of rosemary ( Rosmarinus officinalis L.) extracts and their dependence on extraction solvents, seasons, and drying processes were systematically characterized using NMR spectroscopy and multivariate data analysis. The results showed that the rosemary metabonome was dominated by 33 metabolites including sugars, amino acids, organic acids, polyphenolic acids, and diterpenes, among which quinate, cis-4-glucosyloxycinnamic acid, and 3,4,5-trimethoxyphenylmethanol were found in rosemary for the first time. Compared with water extracts, the 50% aqueous methanol extracts contained higher levels of sucrose, succinate, fumarate, malonate, shikimate, and phenolic acids, but lower levels of fructose, glucose, citrate, and quinate. Chloroform/methanol was an excellent solvent for selective extraction of diterpenes. From February to August, the levels of rosmarinate and quinate increased, whereas the sucrose level decreased. The sun-dried samples contained higher concentrations of rosmarinate, sucrose, and some amino acids but lower concentrations of glucose, fructose, malate, succinate, lactate, and quinate than freeze-dried ones. These findings will fill the gap in the understanding of rosemary composition and its variations.  相似文献   

14.
钙对茄子嫁接苗生长和抗冷性的影响   总被引:23,自引:0,他引:23  
研究了营养液缺Ca处理对茄子嫁接苗抗冷效应的影响。结果表明,缺Ca严重影响了植株的生长发育。在低温胁迫下,与供Ca处理相比,缺Ca处理显著降低了茄子嫁接苗和自根苗叶片总可溶性蛋白、热稳定蛋白和可溶性糖含量,细胞内可溶性Ca和结合Ca含量也显著降低。在相同的低温胁迫时间内,嫁接苗的总可溶性蛋白、热稳定蛋白、可溶性糖含量、细胞内可溶性Ca和结合Ca含量显著高于自根苗。低温胁迫下茄子嫁接苗总可溶性蛋白、热稳定蛋白、可溶性糖含量的提高是由于嫁接苗细胞内可溶性Ca和结合Ca含量的变化引起的。表明Ca含量的变化是其抗冷性强的内在原因,对增强茄子嫁接苗碳水化合物含量和提高植株抗冷性方面起着重要的作用。  相似文献   

15.
Crop productivity is impaired by stress factors, biotic or abiotic. The main are pathogens, diseases, insects, cold, heat, salinity, drought, radiation and others. Among these unfavorable conditions, drought is one of the main occurrences and negatively affects crop development. This environmental adversity generally induces the accumulation of reactive oxygen species (ROS). These molecules lead to oxidative stress, and at high levels cause cell effects, like loss of organelle functions, electrolyte leakage, and reduction in metabolic efficiency. High concentration of ROS in cells can still cause molecular damage that include damage in proteins, amino acids, and lipids, and even lead to cell death. To neutralize these damages, plants increase enzymatic antioxidant activity and non-enzymatic antioxidant contents. ROS are essential to life in plants, and at basal levels performs cellular functions, such as signaling and defense responses. Here, we focus on the ROS production, the involvement and damages of these species in water deficit condition, changes in activity of antioxidant enzymes and non-enzymatic antioxidant contents in plants under drought stress. In addition, the signaling reactions of ROS under stress water restriction, changes on yield components of species under water deficit and the antioxidant genes involved in plant responses to stress were also addressed.  相似文献   

16.
Cell cultures of lavender (Lavandula officinalis) were analyzed for the metabolite profile under normal growth conditions and under stress as well as after jasmonic acid treatment. The main compound synthesized was rosmarinic acid, which was also secreted into the culture medium. Different solvent extraction methods at different pH values altered the profile slightly. Anoxic stress induced the synthesis of a cinnamic acid derivative, which was identified as caffeic acid by gas chromatography-mass spectrometry. Caffeic acid was also induced after treatment of the cell cultures with jasmonic acid. Although the antioxidative activity of both compounds, rosmarinic acid and caffeic acid, was confirmed in an assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), it was demonstrated that both substances have a low cytotoxic potential in vitro using acute myeloid leukemia (HL-60) cells. The potential of the system for finding new bioactive compounds is discussed.  相似文献   

17.
Rosemary (Rosmarinus officinalis) leaves possess a variety of bioactivities. Previous studies have shown that the extract of rosemary leaves from supercritical fluid extraction inhibits the expression of inflammatory mediators with apparent dose-dependent responses. In this study, three different extraction conditions (5000 psi at 40, 60, and 80 °C) of supercritical carbon dioxide (SC-CO(2)) toward the extraction of antioxidants from rosemary were investigated. Furthermore, simultaneous comparison of the anti-inflammatory properties between rosemary extract prepared from SC-CO(2) under optimal conditions (5,000 psi and 80 °C) and its purified carnosic acid (CA) using lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophage cells was also presented. Results showed that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner. The five major compounds of verbenone, cirsimaritin, salvigenin, carnosol, and CA existing in the SC-CO(2) extract were isolated by semipreparative HPLC and identified by HPLC-MS/MS analysis. CA was the most abundant recorded compound and the most important photochemical with an anti-inflammatory effect with an IC(50) of 22.5 μM or 7.47 μg/mL presented to the best inhibitory activity on NO production better than that of the 14.50 μg/mL dosage prepared from the SC-CO(2) extract. Nevertheless, the effective inhibition of LPS-induced NF-κB signaling in RAW 264.7 cells from the SC-CO(2) extract extends the potential application of nutraceutical formulation for the prevention of inflammatory diseases.  相似文献   

18.
Melatonin, known as an animal hormone and an antioxidant with a low molecular weight, is one of the most commonly used substances to improve plant resistance against various environmental stresses. However, there are no studies explaining the effects of melatonin on the relationship between defense system and mineral composition of plants under stressed and unstressed‐conditions. The present study was conducted to investigate whether the mitigating effect of melatonin is associated with its modulating influence on the mineral elements of cold‐stressed maize seedlings. The seedlings were treated with melatonin (1 mM) and cold stress (10/7°C) for 3 d separately and in combination. After 3 d, the seedlings were harvested to determine several physiological, biochemical, and molecular parameters. Melatonin application effectively mitigated the damages from cold stress, as demonstrated by higher relative water concentration, chlorophyll concentration and antioxidant enzyme activities (superoxide dismutase, guaiacol peroxidase, catalase, ascorbate peroxidase, and glutathione reductase), as well as lower superoxide, hydrogen peroxide, and malondialdehyde concentrations. Similarly, melatonin significantly ameliorated cold‐induced reductions in the concentrations of potassium, phosphorus, sulfur, magnesium, iron, copper, manganese, and zinc. Besides, it further increased calcium and boron concentrations compared to cold stress alone. Our results reveal that melatonin has an important modulating influence on the mineral element composition of plants and mitigates cold stress through up‐regulation of these elements and simultaneously enhanced antioxidant activity.  相似文献   

19.
Salinity is one of the major abiotic stress factors for cultivated plants, limiting their growth and productivity in many areas of the world. This study aims to determine the ameliorative effects of humic acid (HA) and plant growth-promoting bacteria (PGPR) on amino acids, enzymes, minerals, organic acids and hormones in Hungarian vetch (Vicia pannonica) plants under salinity stress conditions. Salinity stress was established by adding 0, 10, 30 and 60 mM of sodium chloride (NaCl) to growing media. HA and PGPR treatments had positive ameliorative effects on the minerals, organic acids, hormones and enzyme activity of Hungarian vetch plants under salinity stress conditions. PGPR treatments showed better ameliorative effects than HA. This study suggests that PGPR treatments have the potential to be used as alleviator fertilizer in salinity stress conditions and may have ameliorated the deleterious effects of salt stress on Hungarian vetch plants.  相似文献   

20.
Phosphate (P) availability for plant uptake can limit the yield of natural and agricultural systems. Under P limited conditions, the P-requirement of symbiotic nodules of legumes may exacerbate the P stress of host plants. Adaptations to survive under P stress may vary between different functioning tissues. This study investigated the physiological adaptations to P stress in above and below ground organs of nodulated Medicago truncatula Gaertner. Seedlings were inoculated with Sinorhizobium meliloti in quartz sand and fed nutrient solution with either 0.01?mM or 0.5?mM P concentrations. P-stressed nodulated plants showed compromised photosynthetic responses. Alternative growth allocation during stressed conditions was observed between different organs. The concentration of inorganic P, carbon, and nitrogen were lower during stressed conditions. The above ground tissues scavenged P and lowered their dependence on adenosine-triphosphate required for metabolism. Whereas the below ground tissues recycled phosphate from phosphate monoesters in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号