首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

2.
The effect of dietary n−3 and n−6 polyunsaturated fatty acids (PUFAs) on juvenile Arctic charr Salvelinus alpinus (L.) were investigated with respect to essential fatty acid (EFA) deficiency and lipid metabolism using one commercial and 12 casein-based test diets. Arctic charr with mean weight of 1.6g were fed test diets for 12 weeks at 10°C. At the end of the feeding, blood, liver, muscle and whole fish were sampled to determine haematocrit, haemoglobin, water content, lipid and fatty acid composition. Charr fed diets containing 0–1.0% n−3 PUFAs showed typical EFA deficiency signs: fatty liver or elevated water content in whole body or substantial accumulation of 20:3n−9 in liver polar lipids. These signs were less apparent or disappeared when charr were fed diets containing ≥ 2.0% 18:3n−3. No correlation was found between dietary PUFAs and haematocrit or haemoglobin values. Significant changes in fatty acid composition of liver polar lipids in charr fed dietary PUFAs indicate that charr can convert 18:3n−3, 18:2n−6 and 20:5n−3 into long-chain PUFAs. While charr had a direct incorporation of dietary 22:6n−3 into liver and muscle there appears to be preferential utilization of n−3 PUFAs for elongation and desaturation. The conversion of 18:4n−3 was less in muscle than in livers. These findings, combined with data on growth and feed efficiency reported previously by Yang and Dick (1993), indicate that charr require 1−2% dietary 18:3n−3 (dry weight). Small amounts of dietary 18:2n−6 (up to 0.7%) did not have detrimental effects on charr.  相似文献   

3.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

4.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

5.
A feeding trial was conducted to evaluate the effect of nucleotides supplementation to low‐fish meal feed on growth and fatty acid composition of rainbow trout. Six isonitrogenous (42% crude protein) and isolipidic (18% crude lipid) diets were formulated containing fish meal and plant ingredients as main protein sources. The control diet was a basal diet without supplementation of nucleotides, and five experimental diets were prepared by supplementing one of the five different nucleotides in the form of 5′‐monophosphate (0.15%), that is inosine (IMP), adenosine (AMP), guanosine (GMP), uridine (UMP) and cytidine (CMP) onto basal diet. Two hundred forty juvenile rainbow trout with an initial average body weight 9.8 g were randomly distributed into twelve aquaria. After 15 weeks of feeding period, growth performance and feed utilization of rainbow trout were not significantly different among dietary treatments. Dietary GMP, UMP and CMP tended to accumulate crude lipid in the muscle and whole fish body. Moreover, dietary GMP, UMP and CMP significantly increased hepatic 18:3n‐3 and long‐chain homologue 18:4n‐3 and 20:4n‐3 contents. Hepatic 18:2n‐6 content showed also increase in fish fed GMP, UMP and CMP diets, but decreased in long‐chain homologue 20:3n‐6 and 20:4n‐6 contents. Decrease in 20:4n‐6, 20:5n‐3 and 22:6n‐3 contents was also found in the muscle of fish fed IMP, GMP and CMP diets. The present study clearly showed that there was no positive effect of dietary nucleotides on growth of fish, but dietary nucleotides particularly GMP, UMP and CMP altered polyunsaturated fatty acid composition of rainbow trout.  相似文献   

6.
As a marine carnivore exhibiting exceptionally high growth rates, cobia are considered a species for which fish oil (FO) replacement may be difficult. However, partial, if not complete, FO replacement is necessary to ensure sustainability. We evaluated the effects of graded substitution of dietary FO with soybean oil (SO) in cobia culture. Feeds contained FO (100% FO), SO (0% FO) or blends of the two (67% FO, 33% FO) as the supplemental lipid source. Production performance was largely unaffected by partial replacement of FO with SO: feed intake and final weight were reduced only in the 0% FO dietary treatment. Fillet total lipid fatty acid (FA) composition differed among the dietary treatments, closely approximating dietary FA profile. As increasing amounts of FO were replaced, SO‐associated FA became enriched within the fillet lipid at the expense of FO‐associated FA. Fillet lipid classes were associated with a particular FA signature, regardless of dietary FA profile. SO can replace a substantial amount of dietary FO; however, juvenile cobia appear to exhibit a nominal requirement for intact long‐chain polyunsaturated FA. Therefore, aggressive FO replacement may result in essential fatty acid deficiencies unless the feeds can be amended with alternative sources of these essential nutrients.  相似文献   

7.
The objective of this study was to evaluate the effects of different phospholipids (PL) and cholesterol (CH) levels on the growth, moulting and fatty acid composition of juvenile swimming crab, Portunus trituberculatus. Six diets were designed to contain three PL levels (0, 10 and 20 g/kg) and two CH levels (2 and 8 g/kg). Juvenile swimming crabs (3.48 ± 0.02 g/crab) were reared for 8 weeks. The weight gain (WG) was significantly (< .05) increased by supplementation of 8 g CH/kg of diet. However, no significant interaction between dietary PL and CH levels was found on the growth performance (p > .05). The moulting frequency (MF), protein efficiency ratio (PER) and feed efficiency ratio (FCR) were not significantly (p > .05) affected by the dietary treatments. The serum total cholesterol (TCH) significantly (> .05) increased with increasing dietary PL level. The C20:4n‐6 and C20:5n‐3 content of the whole body of crabs increased with the addition of PL to the diet containing 2 g/kg CH of diet. An interaction was observed between PL and CH on certain saturated and unsaturated fatty acid concentrations of body.  相似文献   

8.
The proportion of body fat in farmed fish correlates with the concentration of fat in the feed, and the fatty acid composition of the storage fat usually reflects that of the lipids in the feed. We examined the time course of changes in fatty acid compositions of fillet, viscera and carcass of Atlantic salmon post‐smolt over 14 weeks after transfer from fresh water to seawater. The fish had been fed either high‐(34%) or low‐ (22%) fat feeds based upon either fish or vegetable oils during freshwater rearing. Changes in tissue fat concentrations and fatty acid compositions were studied to assess the extent to which lipid turnover and fatty acid metabolism might contribute to temporal changes in fatty acid profiles. When given a 41% protein, 31% fat, fish oil‐based feed, the tissue fatty acid profiles of salmon fed vegetable oil‐based feeds in fresh water gradually came to resemble those of fish fed the fish oil‐based feed throughout freshwater and seawater rearing. The changes in tissue fatty acid compositions were greatest during the second half of the study, corresponding to the time at which growth rates of the fish were highest (SGRs weeks 0–6, 0.3–0.6% day?1; weeks 0–14 SGRs > 1% day?1). As the fish increased in size and body fat increased, their tissue fatty acid compositions seemed to be influenced more by deposition of fatty acids obtained from the feed than by lipid turnover and fatty acid metabolism.  相似文献   

9.
A 6‐week feeding trial was conducted to evaluate the nutritional value of dietary linoleic (18:2n‐6, LOA) and linolenic (18:3n‐3, LNA) acids for juvenile Litopenaeus vannamei by determining their effects on growth, survival and fatty acid composition of hepatopancreas and muscle tissue. Diets were formulated to contain 5% total lipid. A basal diet contained only palmitic and stearic acids, each at 2.5% of diet. Six diets contained one of three levels (0.25, 0.5 and 1%) of either LOA or LNA, and three diets had different ratios of LNA/LOA (1, 3, 9) at a combined inclusion level of 0.5% of diet. An additional diet contained 0.5% of a mixture of n‐3 highly unsaturated fatty acids (HUFA). The fatty acid profile of hepatopancreas and muscle of shrimp reflected the profile of the diets. HUFA of the n‐3 family showed higher nutritional value than LOA or LNA for juvenile L. vannamei by producing significantly (P < 0.05) higher final weight and weight gain. Neither LOA nor LNA, alone or in combination, improved growth significantly compared with shrimp fed the basal diet.Thus, dietary requirements for LOA and LNA were not demonstrated under these experimental conditions.  相似文献   

10.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

11.
This study was conducted to investigate the effects of dietary incorporation of soybean meal for fish meal replacement and supplementation of betaine as an attractant on growth performance and fatty acid profiles of rainbow trout (Oncorhynchus mykiss). Juvenile trout were fed practical diets, with increasing soybean levels and betaine supplementations. The experimental diets consisted of a control diet with fish meal as the sole protein source (control) and no attractant, 25% soybean‐1% betaine diet (SBM25‐B1), 50% soybean‐2% betaine diet (SBM50‐B2), and 50% soybean‐0% betaine diet (SBM50‐B0). Average body weight was 12.69 ± 0.16 g at the beginning of experiments. Following 54 days feeding programme with experimental diets, average body weights reached 47.45 ± 1.22 g, 58.11 ± 1.77 g, 56.34 ± 1.87 g and 53.76 ± 1.74 g in the control, SBM25‐B1, SBM50‐B2 and SBM50‐B0 groups respectively. As compared with control treatment, significant differences were observed in weight gain, specific growth rate and feed intake of 1% betaine treatment at 25% soybean‐meal‐incorporated diet (p < .05), but no differences were observed in feed conversation ratio and survival rates (p > .05). Compared with the control treatment, betaine‐supplemented groups had significantly higher total saturated fatty acid contents (p < .05). On the other hand, the control treatment showed a significantly higher level of monounsaturated fatty acid than the betaine‐supplemented groups (p < .05). Significant differences were observed in fatty acid profile of 1% betaine‐supplemented group (p < .05) compared with the control. Present findings revealed that 1% betaine supplementation with dietary incorporation of soybean meal at 25% level positively influenced growth performance, feed utilization and fatty acid profiles of rainbow trout juveniles.  相似文献   

12.
Atlantic salmon fry (4 g) were fed for 4 months on semi-synthetic diets containing fatty acid methyl esters of either 18:2 n-6, 18:3 n-3 or a mixture of equal amounts of 20:5 n-3 and 22:6 n-3. The different amounts of polyunsaturated fatty acids added were 0, 0.1, 0.2, 0.5, 1 and 2% (by dry weight). Increasing levels of dietary n-3 fatty acids up to 1% gave faster growth rates in salmon fry, and fish fed the mixture of 20:5 n-3 and 22:6 n-3 seemed to grow faster than fish fed only 18:3 n-3. No significant effect on growth rate was seen when the dietary level of 18:2 n-6 was increased. Dietary inclusions of n-3 fatty acids reduced the mortality of salmon, while dietary 18:2 n-6 had no such beneficial effects.
The dietary treatments caused substantial changes in the fatty acid composition of blood and liver phospholipids (PL), whereas the total lipid fraction of the carcass was less affected. Increasing doses of 18:2 n-6 in the diet resulted in an increased percentage of 20:4 n-6 in liver and blood PLs, while the percentage of 20:3 n-9 decreased. The percentage of 18:2 n-6 also increased in liver, blood and carcass. Dietary 18:3 n-3 resulted in increased percentages of 18:3 n-3 and 20:5 n-3 in liver PLs, while the percentage of 20:3 n-9 decreased. There was, however, no significant increase in the percentage of 22:6 n-3. Dietary 18:3 n-3 produced no significant changes in the composition of blood fatty acids, but increased the percentage of 18:3 n-3 in the carcass. The dietary combination of the n-3 fatty acids 20:5 and 22:6 resulted in an increased percentage of 22:6 n-3 in blood and liver lipids and a decreased percentage of 20:3 n-9, but there were no changes in the percentage of 20:5 n-3.  相似文献   

13.
To examine the influence of the dietary ratio of (n-3) to (n-6) polyunsaturated fatty acids (PUFAs) on the immune system of Atlantic salmon, Salmo salar L., two dietary trials were carried out in which parr were maintained on diets containing either fish oil [(n-3)/(n-6) PUFA = 5.2] or sunflower oil [(n-3)/(n-6) PUFA = 0.3] and assessed for differences in immunological parameters. There were no significant differences in blood cell counts, differential leucocyte counts or haematocrit values between dietary groups, and while no apparent differences were observed in the non-specific immune parameters measured, there was a significantly higher number of B cells responding to Aeromonas salmonicida, in the kidney and spleen of vaccinated fish maintained on high (n-3)/(n-6) PUFAs diets. There was also a significant difference (P≤ 0.01) between the dietary groups in trial 1 and trial 2 when non-vaccinated fish were challenged with Aeromonas salmonicida and Vibrio anguillarum, respectively, with the (n-6) group succumbing to the bacterium before the (n-3) group. The results suggest that Atlantic salmon fed diets with a low ratio of (n-3)/(n-6) PUFA may be less resistant to infection than those fed diets containing lipid with a high (n-3)/(n-6) PUFA ratio.  相似文献   

14.
为研究饲料n-3/n-6高不饱和脂肪酸(HUFA)对许氏平鲉幼鱼生长、体组成及组织脂肪酸组成的影响,配制了6种n-3/n-6 HUFA(D1:14.28,D2:9.26,D3:5.66,D4:3.06,D5:2.02,D6:1.50)的等氮等脂的实验饲料。以许氏平鲉幼鱼(36.30±0.03) g为研究对象,在网箱中养殖65 d,分为6实验组,每组设3个重复,每个重复30尾鱼。结果发现:①饲料n-3/n-6 HUFA对许氏平鲉幼鱼的成活率无显著影响。随着n-3/n-6 HUFA降低,幼鱼增重率呈先上升后下降趋势,饲料系数呈相反趋势,D2和D3组的增重率显著高于各组。②全鱼和肌肉粗脂肪含量呈先上升后下降趋势,分别在D2、D3组达到最大值。肝脏粗脂肪含量呈先下降后上升趋势,D2组显著小于其他各组。③各组织C20:4n-6含量随n-3/n-6 HUFA的降低均呈上升趋势,而C20:5n-3、C22:6n-3和n-3/n-6 HUFA整体呈下降趋势。④鱼体脂肪酸组成受饲料影响程度由大到小依次为腹脂、肌肉、全鱼、肝脏,且各组织C20:5n-3与饲料C20:4n-6均呈显著负相关。研究表明,在本实验条件下,饲料中适宜比例(5.66~9.26)的n-3/n-6 HUFA显著提高实验鱼的生长,改变体组成及组织脂肪酸组成,以增重率和饲料系数作评价指标,经一元二次回归分析得许氏平鲉幼鱼饲料中n-3/n-6 HUFA的适宜比例分别是8.93和8.70。  相似文献   

15.
Sufficient high‐quality microalgae are required for indoor nursery of juvenile Ruditapes philippinarum. However, culturing numerous microalgae to support clam feeding is a heavy burden on many hatcheries. The effects of detritus from the macroalgae Ulva pertusa, Chondrus ocellatus and Undaria pinnatifida on the growth, amino acid content and fatty acid profile of Rphilippinarum were assessed as potential substitute diets. The green microalga Tetraselmis cordiformis served as comparative diet. Results revealed that the clams ingesting distinct diets presented no significant differences in growth of soft tissues, but the nutritional component of these clams differed dramatically. The clams fed with Undaria + Tetraselmis had the highest content of essential amino acids and proteins. In addition, the clams fed with single macroalgal diets and mixed macroalgal detritus and Tetraselmis showed significantly higher or statistically equal levels in n‐3/n‐6 ratio and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio with respect to Tetraselmis diets. The relative percentages of EPA and DHA in clams fed with Undaria were 28% and 63% higher than those fed with Tetraselmis, and the arachidonic acid abundances in clams ingesting Undaria + Tetraselmis and Tetraselmis were significantly higher than those in clams ingesting other diets. Together, the diets containing single Undaria or mixed Undaria + Tetraselmis produced Manila clams with nutritional advantages in terms of essential amino acids and polyunsaturated fatty acids. Thus, the detritus of macroalgae, especially Undaria, is an appropriate substitute diet, at least partially, for culture of nutrition‐improved R. philippinarum.  相似文献   

16.
吕红雨  周越  舒皝  王伟隆  黄旭雄 《水产学报》2023,47(9):099611-099611
为探讨饲料多不饱和脂肪酸n-3 PUFA/n-6 PUFA比值对罗氏沼虾幼虾生长性能、虾体肌肉组成、抗氧化能力、血清生理指标以及消化能力的影响,实验设计了n-3 PUFA/n-6 PUFA比值分别为0.37 (D1)、0.59 (D2)、0.93 (D3)、1.51 (D4)和4.38 (D5)的5种等氮等脂饲料饲喂罗氏沼虾幼虾8周,每组设4重复,每个重复40尾虾 。结果显示,饲料n-3 PUFA/n-6 PUFA比值对罗氏沼虾幼虾存活率 (SR)无显著影响;实验虾终末体重 (FW)、增重率 (WGR)和特定生长率 (SGR)随饲料n-3 PUFA/n-6 PUFA比值增加先升后降,均在D3组最高;且D3组虾有最大的肝胰腺蛋白酶活性及脂肪酸合成酶活性。虾体肌肉粗蛋白质、水分和灰分含量不受饲料n-3 PUFA/n-6 PUFA比值影响,但总脂肪含量在D3组显著高于其他组;各组虾体肌肉的n-3 PUFA/n-6 PUFA比值的变化趋势与饲料的n-3 PUFA/n-6 PUFA比值变化趋势呈正相关。随饲料n-3 PUFA/n-6 PUFA比值增加,实验虾血清和肝胰腺中超氧化物歧化酶 (SOD)活性、总抗氧化能力 (T-AOC)和血清铜蓝蛋白 (CP)含量均呈现先升后降趋势,并在n-3 PUFA/n-6 PUFA比值为0.93~1.51时达到最大,但丙二醛 (MDA)含量持续上升;D1组血清总胆固醇 (T-CHO)和甘油三酯 (TG)含量显著高于其他组;血清谷草转氨酶 (AST)和谷丙转氨酶 (ALT)活性先降后升,且D3组最低。研究表明,饲料适宜的n-3 PUFA/n-6 PUFA可显著提升罗氏沼虾生长性能和抗氧化能力,对增重率和特定生长率进行折线回归,建议罗氏沼虾幼虾饲料中最适n-3 PUFA/n-6 PUFA比值为0.86~0.94。  相似文献   

17.
Spirulina has been highlighted as a valuable complementary ingredient in aquafeeds due to its high protein and vitamin content, in addition to other nutritional benefits. To evaluate the effect of dietary spirulina inclusion in fish meal sparing (FMS) on juvenile Caspian brown trout as a slow‐growth fish, a complete randomized experimental design was developed with five treatments: 0% (control), 2% FMS (13.2 g/kg spirulina in diet), 4% FMS (26.4 g/kg spirulina in diet), 6% FMS (39.6 g/kg spirulina in diet) and 8% FMS (52.8 g/kg spirulina in diet). Six hundred juveniles (11.0 ± 1.0 g) were assigned to 15 experimental tanks. Although this fish is sensitive to diet composition, fish fed the 6% FMS and 8% FMS diets had a significantly higher weight gain rate (239.51% and 231.27%) and specific growth rate (1.74% bw per day and 1.71% bw per day) compared with those fed the control diet. Furthermore, 6% FMS and 8% FMS treatments had statistically higher protein efficiency (0.76 and 0.78), lipid efficiency (1.89 and 1.94) and statistically lower feed conversion ratio (2.47 and 2.41) compared with other treatments, respectively (p < 0.05). In terms of whole‐body composition, the higher amount of protein and lower content of lipid were observed in fish fed the 8% FMS diets as compared to control. Although no significant differences in ash and moisture content were observed, the highest protein deposition (157.3 g/kg) and the lowest lipid content (77 g/kg) in whole body were reported in fish fed 8% FMS diet. Based on the fillet fatty acid outcome, fish fed the 8% FMS diet had significantly higher saturated fatty acids (SFAs), C20:3n‐6, C18:3n‐3, polyunsaturated fatty acids (PUFAs) and total n‐3 fatty acids as compared to those fed the control diet (p < 0.05). Accordingly, increasing dietary spirulina content significantly enhanced the amount of these fatty acids in fish fillet. As regards of whole‐body amino acid profile, arginine and lysine in fish fed 6% FMS and 8% FMS diets were higher and lower than in those fed the control diet, respectively (p < 0.05). Fillet and skin colour parameters, such as luminosity, redness and yellowness, significantly increased with spirulina supplementation with the 8% FMS treatment displaying higher values than the control. In summary, according to our results, 8% FMS (52.8 g/kg spirulina in diet) treatment improved juvenile Caspian brown trout growth, carcass composition and pigmentation.  相似文献   

18.
Present study investigates the effects of n‐3 high‐unsaturated fatty acid (n‐3HUFA) levels on growth performance, antioxidant enzymes activities and fatty acid compositions of juvenile Litopenaeus vannamei. These represented seven iso‐nitrogenous and iso‐lipidic diets. Analysed n‐3HUFA concentrations were 0.16% (control), 0.48%, 0.74%, 1.39%, 2.39%, 2.92% and 3.44% respectively. A total of 840 juvenile L. vannamei were randomly stocked into 21 0.5 m3 tanks for 56 days. A significant increase (p < 0.05) was observed from 0.16% to 0.74% n‐3HUFA and a decrease when n‐3HUFA was above these levels in weight gain rate (WGR) and specific growth rate. Total cholesterol, triglyceride and low‐density lipoprotein in serum showed a significant decrease, high‐density lipoprotein showed a significant increase (p < 0.05). Phenoloxidase activity in serum and sodium‐potassium adenosine triphosphatase activity in gill were significantly affected by dietary n‐3HUFA (p < 0.05), both of them showing a downward trend after upward. Malic dehydrogenase and superoxide dismutase activities in serum were also significantly affected by dietary n‐3HUFA (p < 0.05), which rose first and then decreased in general, both of them have a maximum in 2.39% group. No significant differences of the activities of aspartate transaminase and alanine transaminase were observed among all groups (p > 0.05). With dietary n‐3HUFA increase, both ∑HUFA and n‐3HUFA contents gradually increased in hepatopancreas and tail muscles (p < 0.05). Based on broken‐line regression analysis of WGR, the optimal n‐3HUFA requirement is 0.89% for juvenile L. vannamei with initial weight of 0.50 ± 0.01 g.  相似文献   

19.
Two 40-day feeding trials using extruded diets were conducted to assess the effect of a dietary phospholipid (PL) supplementation on growth, survival and fatty acid composition of European sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) from weaning onwards. Two dietary treatments (FO and PL) were tested; both had an identical extruded basis (92.5% total diet weight) coated with a different lipid fraction (7.5% total diet weight). Diet PL contained 2% egg yolk PL (69% pure). In diet FO the PL was replaced by hydrogenated coconut oil. The isolipidic diets contained an equal amount of fish oil ethyl esters providing 1.6% (% diet dry weight) of n-3 highly unsaturated fatty acids (HUFA). A diet water stability test showed no effect of the PL supplementation on the leaching of the dietary fatty acids. In both fish species weight, but not survival, significantly increased as a result of PL supplementation. Weaning onto the experimental diets resulted in similar changes in the relative percent levels of fatty acids in both species. In general, the percentage of saturated fatty acids levelled off after a rapid increase, while monoenes increased after an initial decrease. Total n-3 polyunsaturated fatty acids (PUFA) decreased and total n-6 PUFA remained almost constant. The major effect of the dietary PL on fish fatty acid composition was a 50% increase in n-6 and n-3 HUFAs compared to the PL-free FO diet. The rise in n-6 HUFA may have reflected the higher moiety in the dietary PL. On the other hand this was not the case for the n-3 HUFA since they represented only low levels in the PL fraction (0.1%) compared to that provided by the ethyl esters (1.6%) suggesting a more efficient incorporation of the PL n-3 HUFA than of the ethyl ester n-3 HUFA. A second hypothesis is that the dietary PL may have favored the incorporation of the dietary ethyl ester n-3 HUFA.  相似文献   

20.
The objectives of this study were to determine the effects of the dietary docosahexaenoic acid (DHA) to arachidonic acid (ARA) ratio on the survival, growth, hypersaline stress resistance and tissue composition of black sea bass larvae raised from first feeding to metamorphic stages. Larvae were fed enriched rotifers Brachionus rotundiformis and Artemia nauplii containing two levels of DHA (0% and 10% total fatty acids=TFA) in conjunction with three levels of ARA (0%, 3% and 6% TFA). On d24ph, larvae fed the 10:6 (DHA:ARA) treatment showed significantly (P<0.05) higher survival (62.3%) than larvae fed 0:0 (DHA:ARA) (27.4%). Notochord length and dry weight were also significantly (P<0.05) greater in the 10:6 (DHA:ARA) treatment (8.65 mm, 2.14 mg) than in the 0:0 (DHA:ARA) (7.7 mm, 1.65 mg) treatment. During hypersaline (65 g L−1) challenge, no significant differences (P>0.05) were observed in the median survival time (ST50) between larvae fed 10% DHA (ST50=25.6 min) and larvae fed 0% DHA (ST50=18.2 min). The results suggested that black sea bass larvae fed prey containing 10% DHA with increasing ARA within the range of 0–6% showed improved growth and survival from first feeding through metamorphic stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号